欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

使用ElasticSearch完成百万级数据查询附近的人功能

程序员文章站 2022-04-05 23:45:53
...

上一篇文章介绍了ElasticSearch使用Repository和ElasticSearchTemplate完成构建复杂查询条件,简单介绍了ElasticSearch使用地理位置的功能。

这一篇我们来看一下使用ElasticSearch完成大数据量查询附近的人功能,搜索N米范围的内的数据。

准备环境

本机测试使用了ElasticSearch最新版5.5.1,SpringBoot1.5.4,spring-data-ElasticSearch2.1.4.
新建Springboot项目,勾选ElasticSearch和web。
pom文件如下
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
	<modelVersion>4.0.0</modelVersion>

	<groupId>com.tianyalei</groupId>
	<artifactId>elasticsearch</artifactId>
	<version>0.0.1-SNAPSHOT</version>
	<packaging>jar</packaging>

	<name>elasticsearch</name>
	<description>Demo project for Spring Boot</description>

	<parent>
		<groupId>org.springframework.boot</groupId>
		<artifactId>spring-boot-starter-parent</artifactId>
		<version>1.5.4.RELEASE</version>
		<relativePath/> <!-- lookup parent from repository -->
	</parent>

	<properties>
		<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
		<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
		<java.version>1.8</java.version>
	</properties>

	<dependencies>
		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-data-elasticsearch</artifactId>
		</dependency>
		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-web</artifactId>
		</dependency>

		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-test</artifactId>
			<scope>test</scope>
		</dependency>
		<dependency>
			<groupId>com.sun.jna</groupId>
			<artifactId>jna</artifactId>
			<version>3.0.9</version>
		</dependency>
	</dependencies>

	<build>
		<plugins>
			<plugin>
				<groupId>org.springframework.boot</groupId>
				<artifactId>spring-boot-maven-plugin</artifactId>
			</plugin>
		</plugins>
	</build>


</project>
新建model类Person
package com.tianyalei.elasticsearch.model;

import org.springframework.data.annotation.Id;
import org.springframework.data.elasticsearch.annotations.Document;
import org.springframework.data.elasticsearch.annotations.GeoPointField;

import java.io.Serializable;

/**
 * model类
 */
@Document(indexName="elastic_search_project",type="person",indexStoreType="fs",shards=5,replicas=1,refreshInterval="-1")
public class Person implements Serializable {
    @Id
    private int id;

    private String name;

    private String phone;

    /**
     * 地理位置经纬度
     * lat纬度,lon经度 "40.715,-74.011"
     * 如果用数组则相反[-73.983, 40.719]
     */
    @GeoPointField
    private String address;

    public int getId() {
        return id;
    }

    public void setId(int id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getPhone() {
        return phone;
    }

    public void setPhone(String phone) {
        this.phone = phone;
    }

    public String getAddress() {
        return address;
    }

    public void setAddress(String address) {
        this.address = address;
    }
}
我用address字段表示经纬度位置。注意,使用String[]和String分别来表示经纬度时是不同的,见注释。
import com.tianyalei.elasticsearch.model.Person;
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;

public interface PersonRepository extends ElasticsearchRepository<Person, Integer> {

}
看一下Service类,完成插入测试数据的功能,查询的功能我放在Controller里了,为了方便查看,正常是应该放在Service里
package com.tianyalei.elasticsearch.service;

import com.tianyalei.elasticsearch.model.Person;
import com.tianyalei.elasticsearch.repository.PersonRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.data.elasticsearch.core.query.IndexQuery;
import org.springframework.stereotype.Service;

import java.util.ArrayList;
import java.util.List;

@Service
public class PersonService {
    @Autowired
    PersonRepository personRepository;
    @Autowired
    ElasticsearchTemplate elasticsearchTemplate;

    private static final String PERSON_INDEX_NAME = "elastic_search_project";
    private static final String PERSON_INDEX_TYPE = "person";

    public Person add(Person person) {
        return personRepository.save(person);
    }

    public void bulkIndex(List<Person> personList) {
        int counter = 0;
        try {
            if (!elasticsearchTemplate.indexExists(PERSON_INDEX_NAME)) {
                elasticsearchTemplate.createIndex(PERSON_INDEX_TYPE);
            }
            List<IndexQuery> queries = new ArrayList<>();
            for (Person person : personList) {
                IndexQuery indexQuery = new IndexQuery();
                indexQuery.setId(person.getId() + "");
                indexQuery.setObject(person);
                indexQuery.setIndexName(PERSON_INDEX_NAME);
                indexQuery.setType(PERSON_INDEX_TYPE);

                //上面的那几步也可以使用IndexQueryBuilder来构建
                //IndexQuery index = new IndexQueryBuilder().withId(person.getId() + "").withObject(person).build();

                queries.add(indexQuery);
                if (counter % 500 == 0) {
                    elasticsearchTemplate.bulkIndex(queries);
                    queries.clear();
                    System.out.println("bulkIndex counter : " + counter);
                }
                counter++;
            }
            if (queries.size() > 0) {
                elasticsearchTemplate.bulkIndex(queries);
            }
            System.out.println("bulkIndex completed.");
        } catch (Exception e) {
            System.out.println("IndexerService.bulkIndex e;" + e.getMessage());
            throw e;
        }
    }
}
注意看bulkIndex方法,这个是批量插入数据用的,bulk也是ES官方推荐使用的批量插入数据的方法。这里是每逢500的整数倍就bulk插入一次。

package com.tianyalei.elasticsearch.controller;

import com.tianyalei.elasticsearch.model.Person;
import com.tianyalei.elasticsearch.service.PersonService;
import org.elasticsearch.common.unit.DistanceUnit;
import org.elasticsearch.index.query.GeoDistanceQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.sort.GeoDistanceSortBuilder;
import org.elasticsearch.search.sort.SortBuilders;
import org.elasticsearch.search.sort.SortOrder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.data.elasticsearch.core.query.NativeSearchQueryBuilder;
import org.springframework.data.elasticsearch.core.query.SearchQuery;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;

@RestController
public class PersonController {
    @Autowired
    PersonService personService;
    @Autowired
    ElasticsearchTemplate elasticsearchTemplate;

    @GetMapping("/add")
    public Object add() {
        double lat = 39.929986;
        double lon = 116.395645;

        List<Person> personList = new ArrayList<>(900000);
        for (int i = 100000; i < 1000000; i++) {
            double max = 0.00001;
            double min = 0.000001;
            Random random = new Random();
            double s = random.nextDouble() % (max - min + 1) + max;
            DecimalFormat df = new DecimalFormat("######0.000000");
            // System.out.println(s);
            String lons = df.format(s + lon);
            String lats = df.format(s + lat);
            Double dlon = Double.valueOf(lons);
            Double dlat = Double.valueOf(lats);

            Person person = new Person();
            person.setId(i);
            person.setName("名字" + i);
            person.setPhone("电话" + i);
            person.setAddress(dlat + "," + dlon);

            personList.add(person);
        }
        personService.bulkIndex(personList);

//        SearchQuery searchQuery = new NativeSearchQueryBuilder().withQuery(QueryBuilders.queryStringQuery("spring boot OR 书籍")).build();
//        List<Article> articles = elas、ticsearchTemplate.queryForList(se、archQuery, Article.class);
//        for (Article article : articles) {
//            System.out.println(article.toString());
//        }

        return "添加数据";
    }

    /**
     *
     geo_distance: 查找距离某个中心点距离在一定范围内的位置
     geo_bounding_box: 查找某个长方形区域内的位置
     geo_distance_range: 查找距离某个中心的距离在min和max之间的位置
     geo_polygon: 查找位于多边形内的地点。
     sort可以用来排序
     */
    @GetMapping("/query")
    public Object query() {
        double lat = 39.929986;
        double lon = 116.395645;

        Long nowTime = System.currentTimeMillis();
        //查询某经纬度100米范围内
        GeoDistanceQueryBuilder builder = QueryBuilders.geoDistanceQuery("address").point(lat, lon)
                .distance(100, DistanceUnit.METERS);

        GeoDistanceSortBuilder sortBuilder = SortBuilders.geoDistanceSort("address")
                .point(lat, lon)
                .unit(DistanceUnit.METERS)
                .order(SortOrder.ASC);

        Pageable pageable = new PageRequest(0, 50);

        NativeSearchQueryBuilder builder1 = new NativeSearchQueryBuilder().withFilter(builder).withSort(sortBuilder).withPageable(pageable);
        SearchQuery searchQuery = builder1.build();

        //queryForList默认是分页,走的是queryForPage,默认10个
        List<Person> personList = elasticsearchTemplate.queryForList(searchQuery, Person.class);

        System.out.println("耗时:" + (System.currentTimeMillis() - nowTime));
        return personList;
    }
}
看Controller类,在add方法中,我们插入90万条测试数据,随机产生不同的经纬度地址。
在查询方法中,我们构建了一个查询100米范围内、按照距离远近排序,分页每页50条的查询条件。如果不指明Pageable的话,ESTemplate的queryForList默认是10条,通过源码可以看到。
启动项目,先执行add,等待百万数据插入,大概几十秒。
然后执行查询,看一下结果。
使用ElasticSearch完成百万级数据查询附近的人功能
第一次查询花费300多ms,再次查询后时间就大幅下降,到30ms左右,因为ES已经自动缓存到内存了。
可见,ES完成地理位置的查询还是非常快的。适用于查询附近的人、范围查询之类的功能。

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
后记,在后来的使用中,Elasticsearch2.3版本时,按上面的写法出现了geo类型无法索引的情况,进入es的为String,而不是标注的geofiled。在此记录一下解决方法,将String类型修改为GeoPoint,且是org.springframework.data.elasticsearch.core.geo.GeoPoint包下的。然后需要在创建index时,显式调用一下mapping方法,才能正确的映射为geofield。
如下
if (!elasticsearchTemplate.indexExists("abc")) {
			elasticsearchTemplate.createIndex("abc");
			elasticsearchTemplate.putMapping(Person.class);
		}



参考:ES根据地理位置查询 http://blog.csdn.net/bingduanlbd/article/details/52253542