PyTorch学习:二、Autograd(自动求导)
一、Autograd: 自动求导(automatic differentiation)
PyTorch 中所有神经网络的核心是autograd
包.我们首先简单介绍一下这个包,然后训练我们的第一个神经网络.
autograd
包为张量上的所有操作提供了自动求导.它是一个运行时定义的框架,这意味着反向传播是根据你的代码如何运行来定义,并且每次迭代可以不同.
接下来我们用一些简单的示例来看这个包:
张量(Tensor)
torch.Tensor
是包的核心类。如果将其属性.requires_grad
设置为True,则会开始跟踪其上的所有操作。完成计算后,您可以调用.backward()
并自动计算所有梯度。此张量的梯度将累积到.grad
属性中。
要阻止张量跟踪历史记录,可以调用.detach()
将其从计算历史记录中分离出来,并防止将来的计算被跟踪。
要防止跟踪历史记录(和使用内存),您还可以使用torch.no_grad()包装代码块:在评估模型时,这可能特别有用,因为模型可能具有requires_grad = True
的可训练参数,但我们不需要梯度。
还有一个类对于autograd实现非常重要 - Function。
Tensor和Function互相连接并构建一个非循环图构建一个完整的计算过程。每个张量都有一个.grad_fn
属性,该属性引用已创建Tensor的Function(除了用户创建的Tensors - 它们的grad_fn
为None
)。
如果要计算导数,可以在Tensor上调用.backward()
。如果Tensor是标量(即它包含一个元素数据),则不需要为backward()
指定任何参数,但是如果它有更多元素,则需要指定一个梯度参数,该参数是匹配形状的张量。
import torch
创建一个张量并设置requires_grad = True
以跟踪它的计算
x = torch.ones(2, 2, requires_grad=True)
print(x)
输出:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
在张量上执行操作:
y = x + 2
print(y)
输出:
tensor([[3., 3.],
[3., 3.]], grad_fn=<AddBackward0>)
因为y是通过一个操作创建的,所以它有grad_fn,而x是由用户创建,所以它的grad_fn为None.
print(y.grad_fn)
print(x.grad_fn)
输出:
<AddBackward0 object at 0x000001E020B794A8>
None
在y上执行操作
z = y * y * 3
out = z.mean()
print(z, out)
输出:
tensor([[27., 27.],
[27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward1>)
.requires_grad_(...)
就地更改现有的Tensor的requires_grad
标志。 如果没有给出,输入标志默认为False。
a = torch.randn(2, 2)
a = ((a * 3) / (a - 1))
print(a.requires_grad)
a.requires_grad_(True)
print(a.requires_grad)
b = (a * a).sum()
print(b.grad_fn)
输出:
False
True
<SumBackward0 object at 0x000001E020B79FD0>
梯度(Gradients)
现在我们来执行反向传播,out.backward()
相当于执行out.backward(torch.tensor(1.))
out.backward()
输出out对x的梯度d(out)/dx:
print(x.grad)
输出:
tensor([[4.5000, 4.5000],
[4.5000, 4.5000]])
现在让我们来看一个雅可比向量积的例子:
x = torch.randn(3, requires_grad=True)
y = x * 2
while y.data.norm() < 1000:
y = y * 2
print(y)
输出:
tensor([ 384.5854, -13.6405, -1049.2870], grad_fn=<MulBackward0>)
现在在这种情况下,y不再是标量。 torch.autograd
无法直接计算完整雅可比行列式,但如果我们只想要雅可比向量积,只需将向量作为参数向后传递:
v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(v)
print(x.grad)
输出:
tensor([5.1200e+01, 5.1200e+02, 5.1200e-02])
您还可以通过torch.no_grad()代码,在张量上使用.requires_grad = True来停止使用跟踪历史记录。
print(x.requires_grad)
print((x ** 2).requires_grad)
with torch.no_grad():
print((x ** 2).requires_grad)
输出:
True
True
False