欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

快速入门MapReduce③ MapReduce综合练习之上网流量统计

程序员文章站 2022-04-03 22:34:17
...

目录

      需求:

     1.创建maven项目导入pom.xml

     2.自定义map输出value对象FlowBean

     3.定义map类

     4.定义reduce类

     5.定义启动类

     6.输入的文件及结果


需求:

统计每个手机号的上行流量总和,下行流量总和,上行总流量之和,下行总流量之和
分析:以手机号码作为key值,上行流量,下行流量,上行总流量,下行总流量四个字段作为value值,然后以这个key,和value作为map阶段的输出,reduce阶段的输入

1.创建maven项目导入pom.xml

    <repositories>
        <repository>
            <id>cloudera</id>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
        </repository>
    </repositories>

    <dependencies>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.10</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.Hadoop</groupId>
            <artifactId>Hadoop-client</artifactId>
            <version>2.6.0-mr1-cdh5.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.Hadoop</groupId>
            <artifactId>Hadoop-common</artifactId>
            <version>2.6.0-cdh5.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.Hadoop</groupId>
            <artifactId>Hadoop-hdfs</artifactId>
            <version>2.6.0-cdh5.14.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.Hadoop</groupId>
            <artifactId>Hadoop-mapreduce-client-core</artifactId>
            <version>2.6.0-cdh5.14.0</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.11</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.testng</groupId>
            <artifactId>testng</artifactId>
            <version>RELEASE</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.0</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>

            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.4.3</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <minimizeJar>true</minimizeJar>
                        </configuration>
                    </execution>
                </executions>
            </plugin>

        </plugins>
    </build>

2.自定义map输出value对象FlowBean

package com.czxy.flow;

import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

@Data
@NoArgsConstructor
public class FlowBean implements Writable {
    private Integer upFlow;
    private Integer downFlow;
    private Integer upCountFlow;
    private Integer downCountFlow;

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(upFlow);
        out.writeInt(downFlow);
        out.writeInt(upCountFlow);
        out.writeInt(downCountFlow);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        this.upFlow = in.readInt();
        this.downFlow = in.readInt();
        this.upCountFlow = in.readInt();
        this.downCountFlow = in.readInt();
    }
}

3.定义map类

package com.czxy.flow;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
    // 创建FlowBean对象
    FlowBean flowBean = new FlowBean();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        //136315798****	13726230	00-FD-07-A4-72-B8:CMCC	120.196.100.82	i02.c.aliimg.com	游戏娱乐	24	27	2481	24681	200
        // 类型转换
        String s = value.toString();
        // 字符串切割
        String[] split = s.split("\t");
        //给对象添加信息
        flowBean.setUpFlow(Integer.parseInt(split[6]));
        flowBean.setDownFlow(Integer.parseInt(split[7]));
        flowBean.setUpCountFlow(Integer.parseInt(split[8]));
        flowBean.setDownCountFlow(Integer.parseInt(split[9]));
        // 输出
        context.write(new Text(split[1]),flowBean);
    }
}

4.定义reduce类

package com.czxy.flow;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class FlowReduce extends Reducer<Text, FlowBean, Text, FlowBean> {
    private FlowBean flowBean = new FlowBean();

    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
        // 定义变量
        int UpFlow = 0;
        int DownFlow = 0;
        int UpCountFlow = 0;
        int DownCountFlow = 0;
        // 遍历
        for (FlowBean value : values) {
            // 累加
            UpFlow += value.getUpFlow();
            DownFlow += value.getDownFlow();
            UpCountFlow += value.getUpCountFlow();
            DownCountFlow += value.getDownCountFlow();
        }
        // 给对象添加信息
        flowBean.setUpFlow(UpFlow);
        flowBean.setDownFlow(DownFlow);
        flowBean.setUpCountFlow(UpCountFlow);
        flowBean.setDownCountFlow(DownCountFlow);
        // 输出
        context.write(key, flowBean);
    }
}

5.定义启动类

package com.czxy.flow;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class FlowDriver extends Configured implements Tool {
    @Override
    public int run(String[] args) throws Exception {
        // 获取job
        Job job = Job.getInstance(new Configuration());
        //  设置支持jar执行
        job.setJarByClass(FlowDriver.class);
        // 设置执行的napper
        job.setMapperClass(FlowMapper.class);
        // 设置map输出的key类型
        job.setMapOutputKeyClass(Text.class);
        // 设置map输出value类型
        job.setMapOutputValueClass(FlowBean.class);
        // 设置执行的reduce
        job.setReducerClass(FlowReduce.class);
        // 设置reduce输出key的类型
        job.setOutputKeyClass(Text.class);
        // 设置reduce输出value的类型
        job.setOutputValueClass(FlowBean.class);
        // 设置文件输入
        job.setInputFormatClass(TextInputFormat.class);
        TextInputFormat.addInputPath(job, new Path("./data/flow/"));
        // 设置文件输出
        job.setOutputFormatClass(TextOutputFormat.class);
        TextOutputFormat.setOutputPath(job, new Path("./outPut/flow/"));
        // 设置启动类
        boolean b = job.waitForCompletion(true);
        return b ? 0 : 1;
    }

    public static void main(String[] args) throws Exception {
        ToolRunner.run(new FlowDriver(), args);
    }
}

6.输入的文件及结果

          点击下载(提取码 0t53 )

执行结果 part-r-00000

快速入门MapReduce③ MapReduce综合练习之上网流量统计

 

快速入门MapReduce③ MapReduce综合练习之上网流量统计

上一篇: 练习题1

下一篇: 数字特征值