We are given an array of n points in the plane, and the problem is to find out the closest pair of points in the array.This problem arises in a number of applications.For example, in air-traffic control, you may want to monitor planes that come too close together, since this may indicate a possible collision. Recall the following formula for distance between two points p and q.
Geeks面试题: Closest Pair of Points | O(nlogn) Implementation
We have discussed adivide and conquer solutionfor this problem. The time complexity of the implementation provided in the previous post is O(n (Logn)^2). In this post, we discuss an implementation with time complexity as O(nLogn).

Following is a recap of the algorithm discussed in the previous post.

1)We sort all points according to x coordinates.

2)Divide all points in two halves.

3)Recursively find the smallest distances in both subarrays.

4)Take the minimum of two smallest distances. Let the minimum be d.

5)Create an array strip[] that stores all points which are at most d distance away from the middle line dividing the two sets.

6)Find the smallest distance in strip[].

7)Return the minimum of d and the smallest distance calculated in above step 6.

The great thing about the above approach is, if the array strip[] is sorted according to y coordinate, then we can find the smallest distance in strip[] in O(n) time. In the implementation discussed in previous post, strip[] was explicitly sorted in every recursive call that made the time complexity O(n (Logn)^2), assuming that the sorting step takes O(nLogn) time.
In this post, we discuss an implementation where the time complexity is O(nLogn). The idea is to presort all points according to y coordinates. Let the sorted array be Py[]. When we make recursive calls, we need to divide points of Py[] also according to the vertical line. We can do that by simply processing every point and comparing its x coordinate with x coordinate of middle line.