Uva11178计算几何
程序员文章站
2022-04-02 19:01:21
...
题目链接:点击打开链接
题意:做三角形ABC内角的三等分线,交与DEF点求这三点的坐标
D点是向量BC向逆时针旋转B/3弧度和向量CB顺时针旋转C/3的交点,其他也是也一样,用向量旋转和直线相交的模板就可以做出来了
#include <iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const double eps = 1e-8;
struct Point//点 向量
{
double x,y;
Point(double x=0,double y=0):x(x),y(y) {}
};
typedef Point Vector;
//向量使用点作为表示方法 结构相同 为了代码清晰定义宏加以区别
int dcmp(double x) //三态函数 处理与double零有关的精度问题
{
if(fabs(x) < eps) return 0;
return x<0 ? -1 : 1;
}
Vector operator + (Vector A, Vector B)
{
return Vector(A.x+B.x, A.y+B.y);
}
Vector operator - (Vector A, Vector B)
{
return Vector(A.x-B.x, A.y-B.y);
}
Vector operator * (Vector A, double p)
{
return Vector(A.x*p, A.y*p);
}
Vector operator / (Vector A, double p)
{
return Vector(A.x/p, A.y/p);
}
bool operator == (const Vector& A, const Vector& B)
{
return dcmp(A.x-B.x)==0 && dcmp(A.y-B.y)==0;
}
bool operator < (const Point&a,const Point &b)
{
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
double Dot(Vector A, Vector B) //向量点积
{
return A.x * B.x + A.y * B.y;
}
double Cross(Vector A, Vector B) //向量叉积
{
return A.x * B.y - A.y * B.x;
}
double Length(Vector A) //向量长度
{
return sqrt(Dot(A,A));
}
double Angle(Vector A, Vector B) //向量夹角
{
return acos(Dot(A,B) / Length(A) / Length(B));
}
Vector Rotate(Vector A, double rad) //向量旋转 rad为弧度
{
return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
}
//直线向量参数方程 P+tv P为点,v为单位向量 (v长度无用)
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w)//获取直线交点
{
//调用应保证P,Q有交点 : 即 Cross(v,w)!=0
Vector u = P-Q;
double t = Cross(w,u) / Cross(v,w);
return P+v*t;
}
Point getD(Point A,Point B,Point C)
{
Vector v1=C-B;
double a1=Angle(A-B,v1);
v1=Rotate(v1,a1/3);
Vector v2=B-C;
double a2=Angle(A-C,v2);
v2=Rotate(v2,-a2/3);
return GetLineIntersection(B,v1,C,v2);
}
Point read_point()
{
double x,y;
scanf("%lf %lf",&x,&y);
return Point(x,y);
}
main()
{
int T;
Point A,B,C,D,E,F;
scanf("%d",&T);
while(T--)
{
A=read_point();
B=read_point();
C=read_point();
D=getD(A,B,C);
E=getD(B,C,A);
F=getD(C,A,B);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
}
return 0;
}