欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

题解 | Go on Strike!-2019牛客暑期多校训练营第二场C题

程序员文章站 2022-04-01 13:04:35
...

**题目来源于牛客竞赛:**https://ac.nowcoder.com/acm/contest/discuss
题目描述:
There are N cities in Eddy’s neverland. There are some flights to connect some pair of cities. Except flight, there’s no any other way to shuttle between cities.

However, in some cases, flight attendants may go on strike to fight for their rights. Therefore, some flight may be shut down for a period of time. On the other hand, some flight may come out to compete the market.

In Eddy’s neverland, each flight must propose its expected cost to be granted the license to fly. Then, Eddy will choose some flights and grant them the licenses. In order to keep the neverland great, Eddy will choose a minimum total cost flights to grant the license such that each city is possible to connect to each other city by the granted flights.

Since the new coming flight and flight shut down events come everyday, Eddy is not able to find out the best combination of flights with minimum total cost. Please help Eddy to keep his neverland great. Reporting the chosen combination would be too large to check. You only need to tell Eddy what is the most flights needed to connect two cities is under the chosen flights(Not the total cost!).

输入描述:
The first line of input contains two space-separated integers N and Q, where N is the number of cities and Q is the number of events.

Following Q lines each contains four space-separated integers qi,ui,vi,ci. If qi =1, there is a new flight coming out between city ui and city vi with cost ci. If qi=0, the flight attendants of the flight connecting city ui and vi with cost ci has gone on strike and the flight is shut down.

1≤N≤104
1≤Q≤2×104
0≤qi≤1
1≤ui≠vi≤N
0≤ci≤109
It’s guaranteed that if qi = 0, the required flight exists.

输出描述:
Output Q lines each contains an integer representing the most flights needed to connect two cities in the chosen combination. If there exists two cities which can not be connected through the current flights, output “-1”.

It’s guaranteed that the chosen combination will be unique.

示例1:
输入
3 6
1 1 2 1
1 1 3 2
1 2 3 4
1 1 2 8
0 1 2 1
0 2 3 4

输出
-1
2
2
2
2
2

示例2:
输入
4 4
1 1 2 1
1 1 3 2
1 1 4 8
1 2 3 4

输出
-1
-1
2
2

说明:
First two flights are not enough to make each pair of cities connected.

First three flights are enough to make each pair of cities connected. The most flights needed to connect some pair of cities results from connecting city 2 and city 3 which needs two flights to connect(so as city 2 and city 4, city 3 and city 4).
The forth flights won’t be included in the chosen combination. The scenario remains the same.

题解:
• Data structue and data structures(Segment Tree, Link-Cut Tree) If we can maintain minimum spanning tree(MST) and its diameter in O(f). We can solve it in O(Q f \lg Q) now!.
Maintaining a dynamic MST is a classic problem which can be solved in O(\lg N) with only addition of edge.(We can undo it with the power of timeline segment tree) One way to achieve it is by link-cut tree in O(\lg N) per addition.

• Data structue and data structures(Segment Tree, Link-Cut Tree) Maintaining a dynamic MST is a classic problem which can be solved in O(\lg N) with only addition of edge.(We can undo it with the power of timeline segment tree)
While maintaining MST, we can use another link-cut tree to maintain diameter. To compute diameter, it’s another classic dynamic programming problem on tree. With the power of link-cut tree, we can solve it dynamically in O(\lg N).

• Data structue and data structures(Segment Tree, Link-Cut Tree) Since each modification will take O(\lg N). Overall time complexity will be O(Q \lg N \lg Q)

代码:

// {{{ by WangYenJen
#include <bits/stdc++.h>

using namespace std;

// types
typedef long long ll;
typedef pair<int,int> pii;

// macro
#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin() , (x).end()
#define REP(i , n) for(int i = 0; i < int(n); i++)
#define REP1(i , a , b) for(int i = a; i <= int(b); i++)
#define F first
#define S second
#define MP make_pair
#define PB push_back
#define LC o<<1 , l , m
#define RC o<<1|1 , m + 1 , r
#define MS(x , v) memset(x , (v) , sizeof(x))

// input
inline bool SR(int &x) {
	return scanf("%d",&x) == 1;
}
inline bool SR(ll &x) {
	return scanf("%lld",&x) == 1;
}
inline bool SR(double &x) {
	return scanf("%lf",&x) == 1;
}
inline bool SR(char *s) {
	return scanf("%s",s) == 1;
}
inline bool RI() {
	return true;
}
template<typename I , typename... T> inline bool RI(I &x , T&... tail) {
	return SR(x) && RI(tail...);
}

// output
inline void SP(const int x) {
	printf("%d",x);
}
inline void SP(const ll x) {
	printf("%lld",x);
}
inline void SP(const double x) {
	printf("%.16lf",x);
}
inline void SP(const char *s) {
	printf("%s",s);
}
inline void PL() {
	puts("");
}
template<typename I , typename... T> inline void PL(const I x , const T... tail) {
	SP(x);
	if(sizeof...(tail)) putchar(' ');
	PL(tail...);
}

// debug
#define WangYenJen
#ifdef WangYenJen
template<typename I> void _DOING(const char *s , I&& x) {
    cerr << s << " = " << x << endl;
}
template<typename I , typename... T> void _DOING(const char *s , I&& x , T&&... tail) {
    int c = 0;
    while(*s != ',' || c != 0) {
        if(*s == '(' || *s == '[' || *s == '{') c++;
        if(*s == ')' || *s == ']' || *s == '}') c--;
        cerr << *s++;
    }
    cerr << " = " << x << " , ";
    _DOING(s + 1 , tail...);
}
#define debug(...) \
do {\
    fprintf(stderr , "%s:%d - ",__PRETTY_FUNCTION__,__LINE__);\
    _DOING(#__VA_ARGS__ , __VA_ARGS__);\
} while(0);
#else
#define debug(...)
#endif

// random function
inline int RAND() {
	static int x = 880301;
	return (x = x * 0xdefaced + 1) % 0x7fffffff;
}
// }}}

const int INF = 0x3f3f3f3f;
const int MAX_N = 1000000 + 7;

#undef ALL

/* ---------------------------------Splay 1----------------------------------------- */
#define rep(i,x,y) for(i=x;i<=y;i++)
#define _rep(i,x,y) for(i=x;i>=y;i--)
#define ALL(x,S) for(x=S.begin();x!=S.end();x++)
#define mp make_pair
#define fi first
#define se second
#define pb push_back
template<class T> inline void read(T&x){bool fu=0;char c;for(c=getchar();c<=32;c=getchar()){}if(c=='-')fu=1,c=getchar();for(x=0;c>32;c=getchar())x=x*10+c-'0';if(fu)x=-x;};
template<class T> inline void read(T&x,T&y){read(x);read(y);}
template<class T> inline void read(T&x,T&y,T&z){read(x);read(y);read(z);}
inline char getc(){char c;for(c=getchar();c<=32;c=getchar()){}return c;}

int max(int a,int b,int c){return max(max(a,b),c);}

const int inf=int(1e9);
int n,m,i,j,k,x,y,u,v,w0,w1;

multiset<int> son[MAX_N],AMAX_N;
multiset<int>::iterator pos;

priority_queue<pii> Q;

int ch[MAX_N][2],fa[MAX_N],key[MAX_N];bool rev[MAX_N];
int lw[MAX_N],rw[MAX_N],ans2[MAX_N],len[MAX_N];

void Hins(int i,int t){son[i].insert(lw[t]);}
void Hdel(int i,int t){son[i].erase(son[i].find(lw[t]));}
int mson(int i){return son[i].empty()?0:*son[i].rbegin();}
int tson(int i){if(son[i].size()<=1)return mson(i);pos=--son[i].end();return *pos+*(--pos);}

bool tp(int i){return !(ch[fa[i]][0]==i||ch[fa[i]][1]==i);}
void REV(int i){if(i){rev[i]=!rev[i];swap(ch[i][0],ch[i][1]);swap(lw[i],rw[i]);}}
void D(int i){if(rev[i])rev[i]=0,REV(ch[i][0]),REV(ch[i][1]);}
void U(int i)
{
    #define L ch[i][0]
    #define R ch[i][1]
    len[i]=len[L]+key[i]+len[R];
    ans2[i]=max(rw[L]+lw[R],max(rw[L],lw[R])+mson(i),tson(i))+key[i];
    lw[i]=max(lw[L],len[L]+key[i]+mson(i),len[L]+key[i]+lw[R]);
    rw[i]=max(rw[R],len[R]+key[i]+mson(i),len[R]+key[i]+rw[L]);
    Q.push(mp(ans2[i],i));
}

void rot(int i,int t){int x,y;x=ch[i][!t];D(x);y=ch[x][t];ch[i][!t]=y;ch[x][t]=i;if(y)fa[y]=i;if(fa[i])if(ch[fa[i]][0]==i)ch[fa[i]][0]=x;else if(ch[fa[i]][1]==i)ch[fa[i]][1]=x;fa[x]=fa[i];fa[i]=x;U(i);}
void spl(int x){int y,z;D(x);while(!tp(x)){y=fa[x];z=fa[y];if(z)D(z);if(y)D(y);if(tp(y))rot(y,ch[y][0]==x);else if(ch[z][0]==y)if(ch[y][0]==x)rot(z,1),rot(y,1);else rot(y,0),rot(z,1);else if(ch[y][0]==x)rot(y,1),rot(z,0);else rot(z,0),rot(y,0);U(x);}}
void acc(int x){for(int i=0,t;x;i=x,x=fa[x]){spl(x);t=ch[x][1];if(t)Hins(x,t);ch[x][1]=i;if(i){fa[i]=x;Hdel(x,i);}U(x);}}
void maker(int x){acc(x);spl(x);REV(x);}
void change(int x,int y){acc(x);spl(x);key[x]=y;U(x);}
void cut(int x,int y){maker(x);acc(y);spl(y);ch[y][0]=0;fa[x]=0;U(y);}
void link(int x,int y){maker(x);acc(y);spl(y);fa[x]=y;Hins(y,x);U(y);}
vector<int> E[MAX_N];void dfs(int i){vector<int>::iterator it;ALL(it,E[i])if((*it)!=fa[i])fa[*it]=i,dfs(*it),Hins(i,*it);U(i);}
int solve(){pii u;while(1){u=Q.top();if(ans2[u.se]==u.fi)break;Q.pop();}return u.fi;}
/* --------------------------------------------------------------------------------- */

/* ---------------------------------Splay 2----------------------------------------- */
struct Node {
    static Node mem[MAX_N] , *pmem;
    Node *par , *ch[2] , *mx;
    int id , sz , rev_tag , val, mx_len, dp;

    Node(int _id = 0 , int _val = 0) : par(0) , id(_id) , sz(1) , rev_tag(0) , mx(this) , val(_val), mx_len(0), dp(0) {
        MS(ch , 0);
    }
} Node::mem[MAX_N] , *Node::pmem = Node::mem;

int N;
Node *tr[MAX_N];

inline void rev2(Node *o) {
    swap(o->ch[0] , o->ch[1]);
    o->rev_tag ^= 1;
}

inline int sz(Node *o) {
    return o ? o->sz : 0;
}

inline void push(Node *o) {
    if(o->rev_tag) {
        REP(i , 2) if(o->ch[i]) rev2(o->ch[i]);
        o->rev_tag ^= 1;
    }
}

inline void pull(Node *o) {
    o->sz = sz(o->ch[0]) + 1 + sz(o->ch[1]);
    o->mx = o;
    REP(i , 2) if(o->ch[i] && o->ch[i]->mx->val > o->mx->val) o->mx = o->ch[i]->mx;
}

inline int get_ch_id(Node *p , Node *o) {
    REP(i , 2) if(p->ch[i] == o) return i;
    return -1;
}

inline void rotate(Node *o , int d) {
    push(o);
    push(o->ch[d]);
    Node *u = o;
    o = o->ch[d];
    Node *p = u->par;
    int t;
    if(p && (t = get_ch_id(p , u)) != -1) p->ch[t] = o;
    o->par = p;
    u->par = o;
    if(o->ch[d^1]) o->ch[d^1]->par = u;
    u->ch[d] = o->ch[d^1];
    o->ch[d^1] = u;
    pull(u);
    pull(o);
}

inline void rotate(Node *o) {
    if(sz(o->ch[0]) > sz(o->ch[1])) rotate(o , 0);
    else if(sz(o->ch[0]) < sz(o->ch[1])) rotate(o , 1);
}

inline void all_push(Node *o) {
    if(o->par && get_ch_id(o->par , o) != -1) all_push(o->par);
    push(o);
}

inline void splay(Node *o) {
    all_push(o);
    Node *p;
    for(int d; (p = o->par) && (d = get_ch_id(p , o)) != -1;) {
        rotate(p , d);
        rotate(p);
    }
}

inline Node* access(Node *o) {
    Node *last = 0;
    while(o) {
        splay(o);
        o->ch[1] = last;
        pull(o);
        last = o;
        o = o->par;
    }
    return last;
}

inline void make_root(Node *o) {
    rev2(access(o));
    splay(o);
}

inline void link(Node *a , Node *b) {
    make_root(b);
    b->par = a;
}

inline void cut(Node *a , Node *b) {
    make_root(a);
    access(b);
    splay(b);
    b->ch[0] = 0;
    a->par = 0;
    pull(b);
}

inline Node* find_root(Node *o) {
    o = access(o);
    while(o->ch[0]) o = o->ch[0];
    splay(o);
    return o;
}

vector<tuple<int, int, int> > rds;
vector<tuple<int, int, int> > rds2;

vector<tuple<int, int, int> > es;

inline pair<int, int> add_edge(int i , int x , int y , int v) {
    int cnt2 = 0;
    if(find_root(tr[x]) == find_root(tr[y])) {
        make_root(tr[x]);
        access(tr[y]);
        splay(tr[x]);
        int id = tr[x]->mx->id - N;
        if(get<2>(es[id]) > v) {
            cut(tr[get<0>(es[id])] , tr[N + id]);
            cut(tr[get<1>(es[id])] , tr[N + id]);
            link(tr[x] , tr[N + i]);
            link(tr[y] , tr[N + i]);
            rds.emplace_back(1, get<0>(es[id]), N + id);
            rds.emplace_back(1, get<1>(es[id]), N + id);
            rds.emplace_back(0, x, N + i);
            rds.emplace_back(0, y, N + i);

            cut(get<0>(es[id]) + 1, get<1>(es[id]) + 1);
            link(x + 1, y + 1);
            solve();
            rds2.emplace_back(1, get<0>(es[id]) + 1, get<1>(es[id]) + 1);
            rds2.emplace_back(0, x + 1, y + 1);
            return make_pair(4, 2);
        }
        return make_pair(0, 0);
    }
    else {
        assert(0);
        link(tr[x] , tr[N + i]);
        link(tr[y] , tr[N + i]);
        rds.emplace_back(0, x, N + i);
        rds.emplace_back(0, y, N + i);

        link(x + 1, y + 1);
        rds2.emplace_back(0, x + 1, y + 1);

        return make_pair(2, 1);
    }
}


/* --------------------------------------------------------------------------------- */

struct Dsu {
    int cnt;
    stack<pair<int*,int> > stk_sz;
    stack<pair<int*,int> > stk_par;
    int par[MAX_N] , sz[MAX_N];
 
    void init(int n) {
        while(!stk_sz.empty()) stk_sz.pop();
        while(!stk_par.empty()) stk_par.pop();
        cnt = n;
        for (int i = 0; i < n; i++) {
            par[i] = i;
            sz[i] = 1;
        }
    }
 
    int find(int x) {
        if(par[x] == x) return x;
        else return find(par[x]);
    }
 
    bool merge(int x , int y) {
        x = find(x);
        y = find(y);
        if(x == y) return 0;
        if(sz[x] < sz[y]) swap(x , y);
        stk_sz.push(make_pair(&sz[x] , sz[x]));
        stk_par.push(make_pair(&par[y] , par[y]));
        sz[x] += sz[y];
        par[y] = x;
        cnt--;
        return 1;
    }
 
    bool query(int x , int y) {
        return find(x) == find(y);
    }
 
    bool undo() {
        if(stk_sz.empty()) return 0;
        pair<int*,int> p_sz = stk_sz.top();
        pair<int*,int> p_par = stk_par.top();
        stk_sz.pop();
        stk_par.pop();
        *p_sz.first = p_sz.second;
        *p_par.first = p_par.second;
        cnt++;
        return 1;
    }
} dsu;
 
ll ans[MAX_N];
vector<tuple<int, int, int, int> > seg[MAX_N<<2];

void insert(int o , int l , int r , int ql , int qr , tuple<int, int, int, int> e) {
    if(ql <= l && r <= qr) {
        seg[o].push_back(e);
        return;
    }
    int m = (l + r) >> 1;
    if(ql <= m) insert(o<<1, l, m , ql , qr , e);
    if(m < qr) insert(o<<1|1, m + 1, r , ql , qr , e);
}
 
void dfs(int o , int l , int r) {
    int cnt = 0;
    int cnt2 = 0;
    int cnt3 = 0;
    for (int i = 0; i < (int)seg[o].size(); i++) {
        int id, a, b, c;
        tie(id, a, b, c) = seg[o][i];
        auto p = add_edge(id, a, b, c);
        cnt += p.first;
        cnt2 += p.second;
        if (dsu.merge(a, b))
            cnt3++;
    }
    if(l != r) {
        int m = (l + r) >> 1;
        dfs(o<<1, l, m);
        dfs(o<<1|1, m + 1, r);
    }
    else {
        if (dsu.cnt != 1) ans[l] = -1;
        else ans[l] = solve() - 1;
    }
    while(cnt--) {
        int op, a, b;
        tie(op, a, b) = rds.back();
        rds.pop_back();
        if (op == 0)
            cut(tr[a], tr[b]);
        else
            link(tr[a], tr[b]);
    }
    for (int i = 0; i < cnt2; i++) {
        int op, a, b;
        tie(op, a, b) = rds2.back();
        rds2.pop_back();
        if (op == 0)
            cut(a, b);
        else
            link(a, b);
        if (i % 2)
            solve();
    }
    while (cnt3--) dsu.undo();
}

map<tuple<int, int, int>, vector<int> > mps;

int main() {
    for (int i = 0; i < MAX_N; i++)
        key[i] = 1;
    int Q;
    scanf("%d%d", &N, &Q);
    dsu.init(N);
    REP(i , N) tr[i] = new (Node::pmem++)Node(i);
    for (int i = N + Q; i < N + Q + N - 1; i++)
        tr[i] = new (Node::pmem++)Node(i, INF);
    for (int i = 0; i < N - 1; i++) {
        link(tr[i], tr[N + Q + i]);
        link(tr[i + 1], tr[N + Q + i]);

        E[i + 1].push_back(i + 2);
        E[i + 2].push_back(i + 1);
    }
    dfs(1);
    solve();
    REP(i, Q) {
        int op, a, b, c;
        scanf("%d%d%d%d", &op, &a, &b, &c);
        tr[N + i] = new (Node::pmem++)Node(N + i , c);
        a--, b--;
        es.emplace_back(a, b, c);
        if (op == 1) {
            mps[make_tuple(a, b, c)].push_back(i);
        }
        else {
            if (mps[make_tuple(a, b, c)].size()) {
                insert(1, 0,  Q - 1, mps[make_tuple(a, b, c)].back(), i - 1, make_tuple(mps[make_tuple(a, b, c)].back(), a, b, c));
                mps[make_tuple(a, b, c)].pop_back();
            }
        }
    }
    for (int i = 0; i < N - 1; i++)
        es.emplace_back(i, i + 1, INF);
    for (auto it : mps) {
        tuple<int, int, int> t = it.first;
        int a, b, c;
        tie(a, b, c) = t;
        for (int y : it.second)
            insert(1, 0, Q - 1, y, Q - 1, make_tuple(y, a, b, c));
    }
    dfs(1, 0, Q - 1);
    REP(i, Q)
        printf("%lld\n", ans[i]);
    return 0;
}

更多问题,更详细题解可关注牛客竞赛区,一个刷题、比赛、分享的社区。
传送门:https://ac.nowcoder.com/acm/contest/discuss