模板匹配
程序员文章站
2022-04-01 09:44:23
...
/*在一副图像中寻找另一幅图像最匹配(相似)部分的技术
通过在输入图像上华东图像块,对实际图像块和输入图像进行匹配
Void mathcTemplate(inputarray image,//带搜索图像 8位或者32位 浮点图像
Inputarray temp1,//搜索模板 一样的数据类型,不能大于原图尺寸
Outputarray result,//比较结果的映射图像,必须为单通道,32浮点图像,
Int method 匹配方法 6种
);
平方差匹配方法:最好匹配为0 ,匹配越差值越大 TM_SQDIFF
归一化平方差 :TM_SQDIFF_NORME
相关匹配:TM_CCORR 越大越相似 乘法操作
归一化相关匹配 TM_CCORR_NORMED
系数匹配 TM_CCOEFF 1 完美 -1 糟糕 0 没有任何关系
化相系数匹配 TM_CCOEFF_NORMED
*/
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/photo/photo.hpp>
using namespace std;
using namespace cv;
//*********************************
//("C:/Users/hasee-pc/Desktop/women.jpg");
//*********************************
#define WINDOW_NAME1 "【原始图片】"
#define WINDOW_NAME2 "【效果窗口】"
Mat g_srcImage;
Mat g_templateImage;
Mat g_resultImage;
int g_nMatchMehod;
int g_nMaxTrackbarNum = 5;
void on_Matching(int, void *);
int main()
{
g_srcImage = imread("C:/Users/hasee-pc/Desktop/girl.jpg", 1);
g_templateImage = imread("C:/Users/hasee-pc/Desktop/face.jpg", 1);
namedWindow(WINDOW_NAME1, WINDOW_AUTOSIZE);
namedWindow(WINDOW_NAME2, WINDOW_AUTOSIZE);
createTrackbar("方法", WINDOW_NAME1, &g_nMatchMehod, g_nMaxTrackbarNum, on_Matching);
on_Matching(0, 0);
waitKey(0);
}
void on_Matching(int, void *)
{
Mat srcImage;
g_srcImage.copyTo(srcImage);
//初始化输出矩阵
int resultImage_cols = g_srcImage.cols - g_templateImage.cols + 1;
int resultImage_rows = g_srcImage.rows - g_templateImage.rows + 1;
g_resultImage.create(resultImage_cols, resultImage_rows, CV_32FC1);
//匹配和标准化
matchTemplate(g_srcImage, g_templateImage, g_resultImage, g_nMatchMehod);
normalize(g_resultImage, g_resultImage, 0, 1, NORM_MINMAX, -1, Mat());
//定位最匹配位置
double minValue;
double maxValue;
Point minLocation;
Point maxLocation;
Point matchLocation;
minMaxLoc(g_resultImage, &minValue, &maxValue, &minLocation, &maxLocation, Mat());
//值越小匹配程度越高
if (g_nMatchMehod == CV_TM_SQDIFF || g_nMatchMehod == CV_TM_SQDIFF_NORMED)
{
matchLocation = minLocation;
}//值越大匹配程度越高
else
{
matchLocation = maxLocation;
}
//绘制矩形
rectangle(srcImage,
matchLocation,
Point(matchLocation.x + g_templateImage.cols, matchLocation.y + g_templateImage.rows),
Scalar(0, 0, 255),
2,
8,
0
);
rectangle(g_resultImage,
matchLocation,
Point(matchLocation.x + g_templateImage.cols, matchLocation.y + g_templateImage.rows),
Scalar(0, 0, 255),
2,
8,
0
);
imshow(WINDOW_NAME1, srcImage);
imshow(WINDOW_NAME2, g_resultImage);
}
上一篇: A. Candies and Two Sisters
下一篇: php冒泡排序与快速排序算法