欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

4.3编程实现id3

程序员文章站 2022-03-31 08:08:32
...
# -*- coding: utf-8 -*

'''''
create on 2017/3/24, the day after our national football team beat south korea

@author: PY131
'''''

'''
definition of decision node class

attr: attribution as parent for a new branching 
attr_down: dict: {key, value}
        key:   categoric:  categoric attr_value 
               continuous: '<= div_value' for small part
                           '> div_value' for big part
        value: children (Node class)
label: class label (the majority of current sample labels)
'''
import os
os.environ["PATH"] += os.pathsep + 'D:/python(ruanjian)/Graphviz/bin/'

class Node(object):
    def __init__(self, attr_init=None, label_init=None, attr_down_init={}):
        self.attr = attr_init
        self.label = label_init
        self.attr_down = attr_down_init


''' 
Branching for decision tree using recursion 

@param df: the pandas dataframe of the data_set
@return root: Node, the root node of decision tree
'''


def TreeGenerate(df):
    # generating a new root node
    new_node = Node(None, None, {})
    label_arr = df[df.columns[-1]]

    label_count = NodeLabel(label_arr)
    if label_count:  # assert the label_count isn's empty
        new_node.label = max(label_count, key=label_count.get)

        # end if there is only 1 class in current node data
        # end if attribution array is empty
        if len(label_count) == 1 or len(label_arr) == 0:
            return new_node

        # get the optimal attribution for a new branching
        new_node.attr, div_value = OptAttr(df)

        # recursion
        if div_value == 0:  # categoric variable
            value_count = ValueCount(df[new_node.attr])
            for value in value_count:
                df_v = df[df[new_node.attr].isin([value])]  # get sub set
                # delete current attribution
                df_v = df_v.drop(new_node.attr, 1)
                new_node.attr_down[value] = TreeGenerate(df_v)

        else:  # continuous variable # left and right child
            value_l = "<=%.3f" % div_value
            value_r = ">%.3f" % div_value
            df_v_l = df[df[new_node.attr] <= div_value]  # get sub set
            df_v_r = df[df[new_node.attr] > div_value]

            new_node.attr_down[value_l] = TreeGenerate(df_v_l)
            new_node.attr_down[value_r] = TreeGenerate(df_v_r)

    return new_node


'''
make a predict based on root

@param root: Node, root Node of the decision tree
@param df_sample: dataframe, a sample line 
'''


def Predict(root, df_sample):
    try:
        import re  # using Regular Expression to get the number in string
    except ImportError:
        print("module re not found")

    while root.attr != None:
        # continuous variable
        if df_sample[root.attr].dtype == float:
            # get the div_value from root.attr_down
            for key in list(root.attr_down):
                num = re.findall(r"\d+\.?\d*", key)
                div_value = float(num[0])
                break
            if df_sample[root.attr].values[0] <= div_value:
                key = "<=%.3f" % div_value
                root = root.attr_down[key]
            else:
                key = ">%.3f" % div_value
                root = root.attr_down[key]

        # categoric variable
        else:
            key = df_sample[root.attr].values[0]
            # check whether the attr_value in the child branch
            if key in root.attr_down:
                root = root.attr_down[key]
            else:
                break

    return root.label


'''
calculating the appeared label and it's counts

@param label_arr: data array for class labels
@return label_count: dict, the appeared label and it's counts
'''


def NodeLabel(label_arr):
    label_count = {}  # store count of label

    for label in label_arr:
        if label in label_count:
            label_count[label] += 1
        else:
            label_count[label] = 1

    return label_count


'''
calculating the appeared value for categoric attribute and it's counts

@param data_arr: data array for an attribute
@return value_count: dict, the appeared value and it's counts
'''


def ValueCount(data_arr):
    value_count = {}  # store count of value

    for label in data_arr:
        if label in value_count:
            value_count[label] += 1
        else:
            value_count[label] = 1

    return value_count


'''
find the optimal attributes of current data_set

@param df: the pandas dataframe of the data_set 
@return opt_attr:  the optimal attribution for branch
@return div_value: for discrete variable value = 0
                   for continuous variable value = t for bisection divide value
'''


def OptAttr(df):
    info_gain = 0

    for attr_id in df.columns[1:-1]:
        info_gian_tmp, div_value_tmp = InfoGain(df, attr_id)
        if info_gian_tmp > info_gain:
            info_gain = info_gian_tmp
            opt_attr = attr_id
            div_value = div_value_tmp

    return opt_attr, div_value


'''
calculating the information gain of an attribution

@param df:      dataframe, the pandas dataframe of the data_set
@param attr_id: the target attribution in df
@return info_gain: the information gain of current attribution
@return div_value: for discrete variable, value = 0
               for continuous variable, value = t (the division value)
'''


def InfoGain(df, index):
    info_gain = InfoEnt(df.values[:, -1])  # info_gain for the whole label
    div_value = 0  # div_value for continuous attribute

    n = len(df[index])  # the number of sample
    # 1.for continuous variable using method of bisection
    if df[index].dtype == float:
        sub_info_ent = {}  # store the div_value (div) and it's subset entropy

        df = df.sort_values([index], ascending=1)  # sorting via column
        df = df.reset_index(drop=True)

        data_arr = df[index]
        label_arr = df[df.columns[-1]]

        for i in range(n - 1):
            div = (data_arr[i] + data_arr[i + 1]) / 2
            sub_info_ent[div] = ((i + 1) * InfoEnt(label_arr[0:i + 1]) / n) \
                                + ((n - i - 1) * InfoEnt(label_arr[i + 1:-1]) / n)
        # our goal is to get the min subset entropy sum and it's divide value
        div_value, sub_info_ent_max = min(sub_info_ent.items(), key=lambda x: x[1])
        info_gain -= sub_info_ent_max

    # 2.for discrete variable (categoric variable)
    else:
        data_arr = df[index]
        label_arr = df[df.columns[-1]]
        value_count = ValueCount(data_arr)

        for key in value_count:
            key_label_arr = label_arr[data_arr == key]
            info_gain -= value_count[key] * InfoEnt(key_label_arr) / n

    return info_gain, div_value


'''
calculating the information entropy of an attribution

@param label_arr: ndarray, class label array of data_arr
@return ent: the information entropy of current attribution
'''


def InfoEnt(label_arr):
    try:
        from math import log2
    except ImportError:
        print("module math.log2 not found")

    ent = 0
    n = len(label_arr)
    label_count = NodeLabel(label_arr)

    for key in label_count:
        ent -= (label_count[key] / n) * log2(label_count[key] / n)

    return ent


def DrawPNG(root, out_file):
    '''
    visualization of decision tree from root.
    @param root: Node, the root node for tree.
    @param out_file: str, name and path of output file
    '''
    try:
        from pydotplus import graphviz
    except ImportError:
        print("module pydotplus.graphviz not found")

    g = graphviz.Dot()  # generation of new dot

    TreeToGraph(0, g, root)
    g2 = graphviz.graph_from_dot_data(g.to_string())

    g2.write_png(out_file)


def TreeToGraph(i, g, root):
    '''
    build a graph from root on
    @param i: node number in this tree
    @param g: pydotplus.graphviz.Dot() object
    @param root: the root node

    @return i: node number after modified
#     @return g: pydotplus.graphviz.Dot() object after modified
    @return g_node: the current root node in graphviz
    '''
    try:
        from pydotplus import graphviz
    except ImportError:
        print("module pydotplus.graphviz not found")

    if root.attr == None:
        g_node_label = "Node:%d\n好瓜:%s" % (i, root.label)
    else:
        g_node_label = "Node:%d\n好瓜:%s\n属性:%s" % (i, root.label, root.attr)
    g_node = i
    g.add_node(graphviz.Node(g_node, label=g_node_label, fontname="FangSong"))

    for value in list(root.attr_down):
        i, g_child = TreeToGraph(i + 1, g, root.attr_down[value])
        g.add_edge(graphviz.Edge(g_node, g_child, label=value, fontname="FangSong"))

    return i, g_node



# -*- coding: utf-8 -*

'''''
create on 2017/3/24, the day after our national football team beat south korea
@author: PY131
'''''

'''
import data and pre-analysis through data visualization
'''
# using pandas dataframe for .csv read which contains chinese char.
import pandas as pd

data_file_encode = "gb18030"  # the watermelon_3.csv is file codec type
with open("../data/watermelon_3.csv", mode='r', encoding=data_file_encode) as data_file:
    df = pd.read_csv(data_file)

# using seaborn for data visualization.
# # load chinese font
# import matplotlib as mpl
# import matplotlib.pyplot as plt
# import seaborn as sns
# # sns.set(style="whitegrid", color_codes=True)
# mpl.rcParams['font.sans-serif'] = ['Droid Sans Fallback']  # for chinese chararter visualization
# mpl.rcParams['axes.unicode_minus'] = False
# sns.set_context("poster")
#
# f1 = plt.figure(1)
# sns.FacetGrid(df, hue="好瓜", size=5).map(plt.scatter, "密度", "含糖率").add_legend()
# sns.plt.show()
#
# f2 = plt.figure(2)
# sns.plt.subplot(221)
# sns.swarmplot(x = "纹理", y = '密度', hue = "好瓜", data = df)
# sns.plt.subplot(222)
# sns.swarmplot(x = "敲声", y = '密度', hue = "好瓜", data = df)
# sns.plt.subplot(223)
# sns.swarmplot(x = "色泽", y = '含糖率', hue = "好瓜", data = df)
# sns.plt.subplot(224)
# sns.swarmplot(x = "敲声", y = '含糖率', hue = "好瓜", data = df)
# sns.plt.show()

'''
implementation of ID3

rely on decision_tree.py
'''
import Chapter4.decision_tree4_3 as decision_tree

root = decision_tree.TreeGenerate(df)

# df = df.drop(['密度','含糖率'], 1)
# df = df.drop(['色泽','根蒂','敲声','纹理','脐部','触感'], 1)

accuracy_scores = []

'''
from random import sample
for i in range(10):
    train = sample(range(len(df.index)), int(1*len(df.index)/2))

    df_train = df.iloc[train]
    df_test = df.drop(train)
    # generate the tree
    root = decision_tree.TreeGenerate(df_train)
    # test the accuracy
    pred_true = 0
    for i in df_test.index:
        label = decision_tree.Predict(root, df[df.index == i])
        if label == df_test[df_test.columns[-1]][i]:
            pred_true += 1

    accuracy = pred_true / len(df_test.index)
    accuracy_scores.append(accuracy)
'''

# k-folds cross prediction

n = len(df.index)
k = 5
for i in range(k):
    m = int(n / k)
    test = []
    for j in range(i * m, i * m + m):
        test.append(j)

    df_train = df.drop(test)
    df_test = df.iloc[test]
    root = decision_tree.TreeGenerate(df_train)  # generate the tree

    # test the accuracy
    pred_true = 0
    for i in df_test.index:
        label = decision_tree.Predict(root, df[df.index == i])
        if label == df_test[df_test.columns[-1]][i]:
            pred_true += 1

    accuracy = pred_true / len(df_test.index)
    accuracy_scores.append(accuracy)

# print the prediction accuracy result
accuracy_sum = 0
print("accuracy: ", end="")
for i in range(k):
    print("%.3f  " % accuracy_scores[i], end="")
    accuracy_sum += accuracy_scores[i]
print("\naverage accuracy: %.3f" % (accuracy_sum / k))

# dicision tree visualization using pydotplus.graphviz
root = decision_tree.TreeGenerate(df)

decision_tree.DrawPNG(root, "decision_tree_ID3.png")


4.3编程实现id3


查看完整代码及数据集

参考网址:

https://blog.csdn.net/snoopy_yuan/article/details/68959025