2019 ICPC Asia Nanjing Regional K. Triangle(计算几何+二分)
程序员文章站
2022-03-30 16:34:47
...
把板子都抄上了所以代码特别长,其实只用到了几个函数,先判断给定的点p是不是在顶点上,如果是的是的话直接输出对边的中点,如果正好在某条边的中点上的话,同理。
另外情况需要二分,如果点在ab上且在靠近a的地方,那么另一个点在bc上,否则在ac上,其余边上同理,然后二分找就可以了,叉积算三角形面积。
// #pragma GCC optimize(2)
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cstdio>
#include <cctype>
#include <bitset>
#include <string>
#include <vector>
#include <queue>
#include <cmath>
#include <stack>
#include <set>
#include <map>
#define IO \
ios::sync_with_stdio(false); \
// cout.tie(0);
#define lson(x) (x << 1)
#define rson(x) (x << 1 | 1)
using namespace std;
// int dis[8][2] = {0, 1, 1, 0, 0, -1, -1, 0, 1, -1, 1, 1, -1, 1, -1, -1};
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> P;
const int maxn = 1e6 + 10;
const int maxm = 1e7 + 10;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int inf = 0x3f3f3f3f;
const LL mod = 998244353;
const double eps = 1e-8;
const double pi = acos(-1);
// int dis[4][2] = {1, 0, 0, -1, 0, 1, -1, 0};
// int m[13] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int cmp(double x)
{
if (fabs(x) < eps)
return 0;
if (x > 0)
return 1;
return -1;
}
inline double sqr(double x)
{
return x * x;
}
struct point
{
double x, y;
point() {}
point(double a, double b) : x(a), y(b) {}
friend point operator+(const point &a, const point &b)
{
return point(a.x + b.x, a.y + b.y);
}
friend point operator-(const point &a, const point &b)
{
return point(a.x - b.x, a.y - b.y);
}
friend bool operator==(const point &a, const point &b)
{
return cmp(a.x - b.x) == 0 && cmp(a.y - b.y) == 0;
}
friend point operator*(const point &a, const double &b)
{
return point(a.x * b, a.y * b);
}
friend point operator*(const double &a, const point &b)
{
return point(a * b.x, a * b.y);
}
friend point operator/(const point &a, const double &b)
{
return point(a.x / b, a.y / b);
}
double norm()
{
return sqrt(sqr(x) + sqr(y));
}
} a, b, c, p;
double det(const point &a, const point &b)
{
return a.x * b.y - a.y * b.x;
}
double dot(const point &a, const point &b)
{
return a.x * b.x + a.y * b.y;
}
double dist(const point &a, const point &b)
{
return (a - b).norm();
}
point rotate_point(const point &p, double A)
{
double tx = p.x, ty = p.y;
return point(tx * cos(A) - ty * sin(A), tx * sin(A) + ty * cos(A));
}
struct line
{
point a, b;
line() {}
line(point x, point y) : a(x), b(y) {}
};
line point_make_line(const point a, const point b)
{
return line(a, b);
}
double dis_point_segment(const point p, const point s, point t)
{
if (cmp(dot(p - s, t - s)) < 0)
return (p - s).norm();
if (cmp(dot(p - t, s - t)) < 0)
return (p - t).norm();
return fabs(det(s - p, t - p) / dist(s, t));
}
void PointProjline(const point p, const point s, const point t, point &cp)
{
double r = dot((t - s), (p - s)) / dot(t - s, t - s);
cp = s + r * (t - s);
}
bool PointOnSegment(point p, point s, point t)
{
return cmp(det(p - s, t - s)) == 0 && cmp(dot(p - s, p - t)) <= 0;
}
bool parallel(line a, line b)
{
return !cmp(det(a.a - a.b, b.a - b.b));
}
bool line_make_point(line a, line b, point &res)
{
if (parallel(a, b))
return false;
double s1 = det(a.a - b.a, b.b - b.a);
double s2 = det(a.b - b.a, b.b - b.a);
res = (s1 * a.b - s2 * a.a) / (s1 - s2);
return true;
}
line move_d(line a, const double &len)
{
point d = a.b - a.a;
d = d / d.norm();
d = rotate_point(d, pi / 2);
return line(a.a + d * len, a.b + d * len);
}
double s;
point BinSear(point p, point L, point R)
{
point pp = R;
point mid;
for (int i = 0; i < 100; i++)
{
mid = (L + R) / 2.0;
double area = fabs(det(pp - mid, pp - p));
if (cmp(area - s) > 0)
L = mid;
else if (cmp(area - s) < 0)
R = mid;
else
break;
}
return mid;
}
int main()
{
#ifdef WXY
freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
#endif
// IO;
int T;
scanf("%d", &T);
while (T--)
{
scanf("%lf %lf %lf %lf %lf %lf %lf %lf", &a.x, &a.y, &b.x, &b.y, &c.x, &c.y, &p.x, &p.y);
s = abs(det(a - c, a - b) * 0.5);
if (p == a)
{
point t = (b + c) / 2;
printf("%.8lf %.8lf\n", t.x, t.y);
continue;
}
if (p == b)
{
point t = (a + c) / 2;
printf("%.8lf %.8lf\n", t.x, t.y);
continue;
}
if (p == c)
{
point t = (b + a) / 2;
printf("%.8lf %.8lf\n", t.x, t.y);
continue;
}
if (PointOnSegment(p, a, b))
{
point t = (a + b) / 2;
if (p == t)
{
printf("%.8lf %.8lf\n", c.x, c.y);
continue;
}
if (PointOnSegment(p, a, t))
{
point ans = BinSear(p, c, b);
printf("%.8lf %.8lf\n", ans.x, ans.y);
}
else
{
point ans = BinSear(p, c, a);
printf("%.8lf %.8lf\n", ans.x, ans.y);
}
continue;
}
else if (PointOnSegment(p, b, c))
{
point t = (b + c) / 2;
if (p == t)
{
printf("%.8lf %.8lf\n", a.x, a.y);
continue;
}
if (PointOnSegment(p, b, t))
{
point ans = BinSear(p, a, c);
printf("%.8lf %.8lf\n", ans.x, ans.y);
}
else
{
point ans = BinSear(p, a, b);
printf("%.8lf %.8lf\n", ans.x, ans.y);
}
continue;
}
else if (PointOnSegment(p, a, c))
{
point t = (a + c) / 2;
if (p == t)
{
printf("%.8lf %.8lf\n", b.x, b.y);
continue;
}
if (PointOnSegment(p, a, t))
{
point ans = BinSear(p, b, c);
printf("%.8lf %.8lf\n", ans.x, ans.y);
}
else
{
point ans = BinSear(p, b, a);
printf("%.8lf %.8lf\n", ans.x, ans.y);
}
continue;
}
else
{
printf("-1\n");
}
}
return 0;
}
上一篇: PHP内核的学习--创建PHP扩展