欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

如何查看Hadoop运行过程中产生日志

程序员文章站 2022-03-03 09:52:05
...
用hadoop也算有一段时间了,一直没有注意过hadoop运行过程中,产生的数据日志,比如说System打印的日志,或者是log4j,slf4j等记录的日志,存放在哪里,日志信息的重要性,在这里散仙就不用多说了,调试任何程序基本上都得需要分析日志。

hadoop的日志主要是MapReduce程序,运行过程中,产生的一些数据日志,除了系统的日志外,还包含一些我们自己在测试时候,或者线上环境输出的日志,这部分日志通常会被放在userlogs这个文件夹下面,我们可以在mapred-site.xml里面配置运行日志的输出目录,散仙测试文件内容如下:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>
<!-- jobtracker的master地址-->
<property> 
<name>mapred.job.tracker</name> 
<value>192.168.75.130:9001</value> 
</property>
<property>
<!-- hadoop的日志输出指定目录-->
<name>mapred.local.dir</name>
<value>/root/hadoop1.2/mylogs</value>
</property>
</configuration>


配置好,日志目录后,我们就可以把这个配置文件,分发到各个节点上,然后启动hadoop。
下面我们看来下在eclipse环境中如何调试,散仙在setup,map和reduce方法中,分别使用System打印了一些数据,当我们使用local方式跑MR程序时候,日志并不会被记录下来,而是直接会在控制台打印,散仙的测试代码如下:

package com.qin.testdistributed;

import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.Scanner;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.db.DBConfiguration;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.pattern.LogEvent;
 
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.qin.operadb.WriteMapDB;
 

/**
 * 测试hadoop的全局共享文件
 * 使用DistributedCached
 * 
 * 大数据技术交流群: 37693216
 * @author qindongliang
 * 
 * ***/
public class TestDistributed {
	
	
	private static Logger logger=LoggerFactory.getLogger(TestDistributed.class);
	
	
	
	
	
	private static class FileMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
		
	     	Path path[]=null;
	     	
		/**
		 * Map函数前调用
		 * 
		 * */
		@Override
		protected void setup(Context context)
				throws IOException, InterruptedException {
		  logger.info("开始启动setup了哈哈哈哈");
		    // System.out.println("运行了.........");
		  Configuration conf=context.getConfiguration();
		   path=DistributedCache.getLocalCacheFiles(conf);
	       System.out.println("获取的路径是:  "+path[0].toString());
	     //  FileSystem fs = FileSystem.get(conf);
	       FileSystem fsopen= FileSystem.getLocal(conf);
	      // FSDataInputStream in = fsopen.open(path[0]);
	      // System.out.println(in.readLine());
//	       for(Path tmpRefPath : path) {
//	           if(tmpRefPath.toString().indexOf("ref.png") != -1) {
//	               in = reffs.open(tmpRefPath);
//	               break;
//	           }
//	       }
	       
     // FileReader reader=new FileReader("file://"+path[0].toString());
//      File f=new File("file://"+path[0].toString());
      // FSDataInputStream in=fs.open(new Path(path[0].toString()));
//	     Scanner scan=new Scanner(in);
//	       while(scan.hasNext()){
//	    	   System.out.println(Thread.currentThread().getName()+"扫描的内容:  "+scan.next());
//	       }
//	       scan.close();
//		
		// System.out.println("size: "+path.length);
			
			
		}
		
		
		@Override
		protected void map(LongWritable key, Text value,Context context)
				throws IOException, InterruptedException {
		 
		//	System.out.println("map    aaa");
			//logger.info("Map里的任务");
			System.out.println("map里输出了");
		//	logger.info();
			context.write(new Text(""), new IntWritable(0));

		
		}
 
		
		 @Override
		protected void cleanup(Context context)
				throws IOException, InterruptedException {
		
			 
			 logger.info("清空任务了。。。。。。");
		}
		
	}
	
	
	private static class  FileReduce extends Reducer<Object, Object, Object, Object>{
		
		
		@Override
		protected void reduce(Object arg0, Iterable<Object> arg1,
				 Context arg2)throws IOException, InterruptedException {
			 
			
			System.out.println("我是reduce里面的东西");
		}
	}
	
	
	
	public static void main(String[] args)throws Exception {
		
		
		JobConf conf=new JobConf(TestDistributed.class);
		//conf.set("mapred.local.dir", "/root/hadoop");
		 //Configuration conf=new Configuration();
		
	    // conf.set("mapred.job.tracker","192.168.75.130:9001");
		//读取person中的数据字段
	  	   //conf.setJar("tt.jar");
		 
		//注意这行代码放在最前面,进行初始化,否则会报
		 String inputPath="hdfs://192.168.75.130:9000/root/input";	    
		 String outputPath="hdfs://192.168.75.130:9000/root/outputsort";
		 
		Job job=new Job(conf, "a");
		DistributedCache.addCacheFile(new URI("hdfs://192.168.75.130:9000/root/input/f1.txt"), job.getConfiguration());
		job.setJarByClass(TestDistributed.class);
		System.out.println("运行模式:  "+conf.get("mapred.job.tracker"));
		/**设置输出表的的信息  第一个参数是job任务,第二个参数是表名,第三个参数字段项**/
	   FileSystem fs=FileSystem.get(job.getConfiguration());
		
		  Path pout=new Path(outputPath);
		  if(fs.exists(pout)){
			  fs.delete(pout, true);
			  System.out.println("存在此路径, 已经删除......");
		  } 
		 /**设置Map类**/
		// job.setOutputKeyClass(Text.class);
		 //job.setOutputKeyClass(IntWritable.class);
		  job.setMapOutputKeyClass(Text.class);
		  job.setMapOutputValueClass(IntWritable.class);
		 job.setMapperClass(FileMapper.class);
	     job.setReducerClass(FileReduce.class);
		 FileInputFormat.setInputPaths(job, new Path(inputPath));  //输入路径
         FileOutputFormat.setOutputPath(job, new Path(outputPath));//输出路径  
		
		System.exit(job.waitForCompletion(true) ? 0 : 1);  
		
		
		
	}
	
	
	

}

Local模式下输出如下:
运行模式:  local
存在此路径, 已经删除......
WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
WARN - JobClient.copyAndConfigureFiles(870) | No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1
WARN - LoadSnappy.<clinit>(46) | Snappy native library not loaded
INFO - TrackerDistributedCacheManager.downloadCacheObject(423) | Creating f1.txt in /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input-work-186410214545932656 with rwxr-xr-x
INFO - TrackerDistributedCacheManager.downloadCacheObject(463) | Cached hdfs://192.168.75.130:9000/root/input/f1.txt as /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
INFO - TrackerDistributedCacheManager.localizePublicCacheObject(486) | Cached hdfs://192.168.75.130:9000/root/input/f1.txt as /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_local479869714_0001
INFO - LocalJobRunner$Job.run(340) | Waiting for map tasks
INFO - LocalJobRunner$Job$MapTaskRunnable.run(204) | Starting task: attempt_local479869714_0001_m_000000_0
INFO - Task.initialize(534) |  Using ResourceCalculatorPlugin : null
INFO - MapTask.runNewMapper(729) | Processing split: hdfs://192.168.75.130:9000/root/input/f1.txt:0+31
INFO - MapTask$MapOutputBuffer.<init>(949) | io.sort.mb = 100
INFO - MapTask$MapOutputBuffer.<init>(961) | data buffer = 79691776/99614720
INFO - MapTask$MapOutputBuffer.<init>(962) | record buffer = 262144/327680
INFO - TestDistributed$FileMapper.setup(57) | 开始启动setup了哈哈哈哈
获取的路径是:  /root/hadoop1.2/hadooptmp/mapred/local/archive/9070031930820799196_1788685676_88844454/192.168.75.130/root/input/f1.txt
map里输出了
map里输出了
INFO - TestDistributed$FileMapper.cleanup(107) | 清空任务了。。。。。。
INFO - MapTask$MapOutputBuffer.flush(1289) | Starting flush of map output
INFO - MapTask$MapOutputBuffer.sortAndSpill(1471) | Finished spill 0
INFO - Task.done(858) | Task:attempt_local479869714_0001_m_000000_0 is done. And is in the process of commiting
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Task.sendDone(970) | Task 'attempt_local479869714_0001_m_000000_0' done.
INFO - LocalJobRunner$Job$MapTaskRunnable.run(229) | Finishing task: attempt_local479869714_0001_m_000000_0
INFO - LocalJobRunner$Job.run(348) | Map task executor complete.
INFO - Task.initialize(534) |  Using ResourceCalculatorPlugin : null
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Merger$MergeQueue.merge(408) | Merging 1 sorted segments
INFO - Merger$MergeQueue.merge(491) | Down to the last merge-pass, with 1 segments left of total size: 16 bytes
INFO - LocalJobRunner$Job.statusUpdate(466) | 
我是reduce里面的东西
INFO - Task.done(858) | Task:attempt_local479869714_0001_r_000000_0 is done. And is in the process of commiting
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Task.commit(1011) | Task attempt_local479869714_0001_r_000000_0 is allowed to commit now
INFO - FileOutputCommitter.commitTask(173) | Saved output of task 'attempt_local479869714_0001_r_000000_0' to hdfs://192.168.75.130:9000/root/outputsort
INFO - LocalJobRunner$Job.statusUpdate(466) | reduce > reduce
INFO - Task.sendDone(970) | Task 'attempt_local479869714_0001_r_000000_0' done.
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 100%
INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_local479869714_0001
INFO - Counters.log(585) | Counters: 18
INFO - Counters.log(587) |   File Output Format Counters 
INFO - Counters.log(589) |     Bytes Written=0
INFO - Counters.log(587) |   File Input Format Counters 
INFO - Counters.log(589) |     Bytes Read=31
INFO - Counters.log(587) |   FileSystemCounters
INFO - Counters.log(589) |     FILE_BYTES_READ=454
INFO - Counters.log(589) |     HDFS_BYTES_READ=124
INFO - Counters.log(589) |     FILE_BYTES_WRITTEN=138372
INFO - Counters.log(587) |   Map-Reduce Framework
INFO - Counters.log(589) |     Map output materialized bytes=20
INFO - Counters.log(589) |     Map input records=2
INFO - Counters.log(589) |     Reduce shuffle bytes=0
INFO - Counters.log(589) |     Spilled Records=4
INFO - Counters.log(589) |     Map output bytes=10
INFO - Counters.log(589) |     Total committed heap usage (bytes)=455475200
INFO - Counters.log(589) |     Combine input records=0
INFO - Counters.log(589) |     SPLIT_RAW_BYTES=109
INFO - Counters.log(589) |     Reduce input records=2
INFO - Counters.log(589) |     Reduce input groups=1
INFO - Counters.log(589) |     Combine output records=0
INFO - Counters.log(589) |     Reduce output records=0
INFO - Counters.log(589) |     Map output records=2

下面,我们将程序,提交成hadoop集群上运行进行测试,注意在集群上运行,日志信息就不会在控制台显示了,我们需要去自己定义的日志目录下,找到最新提交 的那个下,然后就可以查看我们的日志信息了。
如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 

如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 
查看stdout里面的内容如下:
获取的路径是:  /root/hadoop1.2/mylogs/taskTracker/distcache/2726204645197711229_1788685676_88844454/192.168.75.130/root/input/f1.txt
map里输出了
map里输出了

注意,map里面的日志需要去xxxmxxx和xxxrxxx里面去找:

如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 
当然,除了这种方式外,我们还可以直接通过50030端口在web页面上进行查看,截图示例如下:

如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 

如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 
如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 

如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 

如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 
至此,我们已经散仙已经介绍完了,这两种方式,Hadoop在执行过程中,日志会被随机分到任何一台节点上,我们可能不能确定本次提交的任务日志输出到底放在那里,但是我们可以通过在50030的web页面上,查看最新的一次任务,一般是最下面的任务,是最新提交的,通过页面上的连接我们就可以,查看到具体的本次任务的日志情况被随机分发到那个节点上了,然后就可以去具体的 节点上获取了。





  • 如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 
  • 大小: 187.1 KB
  • 如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 
  • 大小: 154.8 KB
  • 如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 
  • 大小: 132 KB
  • 如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 
  • 大小: 439.9 KB
  • 如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 
  • 大小: 350.3 KB
  • 如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 
  • 大小: 233.1 KB
  • 如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 
  • 大小: 366.2 KB
  • 如何查看Hadoop运行过程中产生日志
            
    
    博客分类: Hadoop hadoopmapreducehadoop调试日志位置 
  • 大小: 1016.3 KB