欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

如何使用eclipse调试Hadoop作业

程序员文章站 2022-03-03 09:48:41
...
使用eclipse来调试hadoop作业是非常简洁方便的,散仙以前也有用eclipse开发过hadoop程序,但是一直没有深入了解eclipse调试的一些模式,有些时候也会出一些莫名奇妙的异常,最常见的就是下面这个
java.lang.RuntimeException: java.lang.ClassNotFoundException: com.qin.sort.TestSort$SMapper
	at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:857)
	at org.apache.hadoop.mapreduce.JobContext.getMapperClass(JobContext.java:199)
	at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:718)
	at org.apache.hadoop.mapred.MapTask.run(MapTask.java:364)
	at org.apache.hadoop.mapred.Child$4.run(Child.java:255)
	at java.security.AccessController.doPrivileged(Native Method)
	at javax.security.auth.Subject.doAs(Subject.java:415)
	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1190)

这个异常是最莫名其妙的一个,明明自己的MR类里面有这个Mapper的内部类,但是一运行程序,就报这个异常,说找不到这个类,然后就百般查找问题,找来找去,也没找出个所以然。

其实这并不是程序的问题,而是对eclipse的调试模式不够了解的问题,eclipse上运行hadoop总的来说有2种模式,第一种就是Local模式,也叫本地模式,第二种就是我们正式的线上集群模式,当运行本地模式的时候,程序并不会被提交到Hadoop集群上,而是基于单机的模式跑的,但是单机的模式,运行的结果仍在是存储在HDFS上的,只不过没有利用hadoop集群的资源,单机的模式不要提交jar包到hadoop集群上,因此一般我们使用local来测试我们的MR程序是否能够正常运行,
下面我们来看下,基于Local模式跑的一个排序作业:

排序数据:
a 784
b 12
c -11
dd 99999

程序源码:
package com.qin.sort;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


 
/**
 * 测试排序的
 * MR作业类
 * 
 * QQ技术交流群:324714439
 * @author qindongliang
 * 
 * 
 * **/
public class TestSort {
	
	
	/**
	 * Map类
	 * 
	 * **/
	private static class SMapper extends Mapper<LongWritable, Text, IntWritable, Text>{
		
		private Text text=new Text();//输出
		 private static final IntWritable one=new IntWritable();
		
		@Override
		protected void map(LongWritable key, Text value,Context context)
				throws IOException, InterruptedException {
			String s=value.toString();
		 	//System.out.println("abc: "+s);
		//	if((s.trim().indexOf(" ")!=-1)){
			 String ss[]=s.split(" ");
 			 one.set(Integer.parseInt(ss[1].trim()));//
 			 text.set(ss[0].trim());  
 			 context.write(one, text);
		}
	}
	
	/**
	 * Reduce类
	 *
	 * */
	 private static class SReduce extends Reducer<IntWritable, Text, Text, IntWritable>{
		 private Text text=new Text();
		 @Override
		protected void reduce(IntWritable arg0, Iterable<Text> arg1,Context context)
				throws IOException, InterruptedException {
			 
			 
			 for(Text t:arg1){
				 text.set(t.toString());
				
				 context.write(text, arg0);
			 } 
		}
	 }
	 
	 /**
	  * 排序的类
	  * 
	  * **/
	 private static class SSort extends WritableComparator{
		 
		 public SSort() {
			 super(IntWritable.class,true);//注册排序组件
		}
		 @Override
		public int compare(byte[] arg0, int arg1, int arg2, byte[] arg3,
				int arg4, int arg5) {
			/**
			 * 控制升降序的关键控制-号是降序
			 * */
			return -super.compare(arg0, arg1, arg2, arg3, arg4, arg5);//注意使用负号来完成降序
		}
		 
		 @Override
		public int compare(Object a, Object b) {
	 
			return    -super.compare(a, b);//注意使用负号来完成降序
		}
		 
		 
	 }
	
	 /**
	  * main方法
	  * */
	 public static void main(String[] args) throws Exception{
		 String inputPath="hdfs://192.168.75.130:9000/root/output";	    
		  String outputPath="hdfs://192.168.75.130:9000/root/outputsort";
		  JobConf conf=new JobConf();
		//Configuration conf=new Configuration();
		   //在你的文件地址前自动添加:hdfs://master:9000/
		 // conf.set("fs.default.name", "hdfs://192.168.75.130:9000");
		  //指定jobtracker的ip和端口号,master在/etc/hosts中可以配置
		//  conf.set("mapred.job.tracker","192.168.75.130:9001");
		 // conf.get("mapred.job.tracker");
		 System.out.println("模式:  "+conf.get("mapred.job.tracker"));
		//  conf.setJar("tt.jar");
		  FileSystem  fs=FileSystem.get(conf);
		  Path pout=new Path(outputPath);
		  if(fs.exists(pout)){
			  fs.delete(pout, true);
			  System.out.println("存在此路径, 已经删除......");
		  } 		  
		  Job job=new Job(conf, "sort123"); 
          job.setJarByClass(TestSort.class);
          job.setOutputKeyClass(IntWritable.class);//告诉map,reduce输出K,V的类型
          FileInputFormat.setInputPaths(job, new Path(inputPath));  //输入路径
          FileOutputFormat.setOutputPath(job, new Path(outputPath));//输出路径  
          job.setMapperClass(SMapper.class);//map类
          job.setReducerClass(SReduce.class);//reduce类
          job.setSortComparatorClass(SSort.class);//排序类
//          job.setInputFormatClass(org.apache.hadoop.mapreduce.lib.input.TextInputFormat.class);
//		  job.setOutputFormatClass(TextOutputFormat.class);
          System.exit(job.waitForCompletion(true) ? 0 : 1);  
		 
		 
	}
	

}

打印结果如下:
模式:  local
存在此路径, 已经删除......
WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
WARN - JobClient.copyAndConfigureFiles(870) | No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1
WARN - LoadSnappy.<clinit>(46) | Snappy native library not loaded
INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_local1242054158_0001
INFO - LocalJobRunner$Job.run(340) | Waiting for map tasks
INFO - LocalJobRunner$Job$MapTaskRunnable.run(204) | Starting task: attempt_local1242054158_0001_m_000000_0
INFO - Task.initialize(534) |  Using ResourceCalculatorPlugin : null
INFO - MapTask.runNewMapper(729) | Processing split: hdfs://192.168.75.130:9000/root/output/sort.txt:0+28
INFO - MapTask$MapOutputBuffer.<init>(949) | io.sort.mb = 100
INFO - MapTask$MapOutputBuffer.<init>(961) | data buffer = 79691776/99614720
INFO - MapTask$MapOutputBuffer.<init>(962) | record buffer = 262144/327680
INFO - MapTask$MapOutputBuffer.flush(1289) | Starting flush of map output
INFO - MapTask$MapOutputBuffer.sortAndSpill(1471) | Finished spill 0
INFO - Task.done(858) | Task:attempt_local1242054158_0001_m_000000_0 is done. And is in the process of commiting
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Task.sendDone(970) | Task 'attempt_local1242054158_0001_m_000000_0' done.
INFO - LocalJobRunner$Job$MapTaskRunnable.run(229) | Finishing task: attempt_local1242054158_0001_m_000000_0
INFO - LocalJobRunner$Job.run(348) | Map task executor complete.
INFO - Task.initialize(534) |  Using ResourceCalculatorPlugin : null
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Merger$MergeQueue.merge(408) | Merging 1 sorted segments
INFO - Merger$MergeQueue.merge(491) | Down to the last merge-pass, with 1 segments left of total size: 35 bytes
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Task.done(858) | Task:attempt_local1242054158_0001_r_000000_0 is done. And is in the process of commiting
INFO - LocalJobRunner$Job.statusUpdate(466) | 
INFO - Task.commit(1011) | Task attempt_local1242054158_0001_r_000000_0 is allowed to commit now
INFO - FileOutputCommitter.commitTask(173) | Saved output of task 'attempt_local1242054158_0001_r_000000_0' to hdfs://192.168.75.130:9000/root/outputsort
INFO - LocalJobRunner$Job.statusUpdate(466) | reduce > reduce
INFO - Task.sendDone(970) | Task 'attempt_local1242054158_0001_r_000000_0' done.
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 100%
INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_local1242054158_0001
INFO - Counters.log(585) | Counters: 19
INFO - Counters.log(587) |   File Output Format Counters 
INFO - Counters.log(589) |     Bytes Written=26
INFO - Counters.log(587) |   File Input Format Counters 
INFO - Counters.log(589) |     Bytes Read=28
INFO - Counters.log(587) |   FileSystemCounters
INFO - Counters.log(589) |     FILE_BYTES_READ=393
INFO - Counters.log(589) |     HDFS_BYTES_READ=56
INFO - Counters.log(589) |     FILE_BYTES_WRITTEN=135742
INFO - Counters.log(589) |     HDFS_BYTES_WRITTEN=26
INFO - Counters.log(587) |   Map-Reduce Framework
INFO - Counters.log(589) |     Map output materialized bytes=39
INFO - Counters.log(589) |     Map input records=4
INFO - Counters.log(589) |     Reduce shuffle bytes=0
INFO - Counters.log(589) |     Spilled Records=8
INFO - Counters.log(589) |     Map output bytes=25
INFO - Counters.log(589) |     Total committed heap usage (bytes)=455475200
INFO - Counters.log(589) |     Combine input records=0
INFO - Counters.log(589) |     SPLIT_RAW_BYTES=112
INFO - Counters.log(589) |     Reduce input records=4
INFO - Counters.log(589) |     Reduce input groups=4
INFO - Counters.log(589) |     Combine output records=0
INFO - Counters.log(589) |     Reduce output records=4
INFO - Counters.log(589) |     Map output records=4


排序结果如下:
dd	99999
a	784
b	12
c	-11

单机模式调试通过之后,我们就可以考虑采用hadoop集群的模式来跑,这时候有2种方式,可以来完成这件事,第一是,为了方便将整个项目打成一个jar包,上传到Linux上,然后执行shell命令:
bin/hadoop jar tt.jar com.qin.sort.TestSort
来进行测试,注意,散仙是为了方便,路径是写死在程序里面所以后面不用输入,输入和输出路径,正式的开发,为了灵活性,一般会通过外部传产来指定输入和输出路径。

第二种方式,也比较方便,直接在eclipse中提交到hadoop集群作业中,不过即使是使用eclipse来提交作业,还是需要将整个项目打成一个jar包,只不过这时是eclipse帮我们提交作业的,这样我们就可以Win平台上直接提交运行hadoop作业了,但是主流的还是使用上传jar包的方式。关于把整个项目打成一个jar包,散仙在后面会上传一个ant脚本,直接执行它就可以了,这样就可以把有依赖关系的类打在一起,把一整个项目做为一个整体,在hadoop上,只需要指定jar,指定类的全名称,和输入,输出路径即可。ant的脚本内容如下:

<project name="${component.name}" basedir="." default="jar">
	<property environment="env"/>
	<!--
	<property name="hadoop.home" value="${env.HADOOP_HOME}"/>
	-->
	<property name="hadoop.home" value="D:/hadoop-1.2.0"/>
	<!-- 指定jar包的名字 -->
	<property name="jar.name" value="tt.jar"/>
	<path id="project.classpath">
		<fileset dir="lib">
			<include name="*.jar" />
		</fileset>
		<fileset dir="${hadoop.home}">
			<include name="**/*.jar" />
		</fileset>
	</path>
	<target name="clean" >
	 	<delete dir="bin" failonerror="false" />
		<mkdir dir="bin"/>
 	</target>	
	<target name="build" depends="clean">
 		<echo message="${ant.project.name}: ${ant.file}"/>
 		<javac destdir="bin" encoding="utf-8" debug="true" includeantruntime="false" debuglevel="lines,vars,source">
            <src path="src"/>
 			<exclude name="**/.svn" />
            <classpath refid="project.classpath"/>
        </javac>
		<copy todir="bin">
			<fileset dir="src">
				<include name="*config*"/>
			</fileset>
		</copy>
 	</target>
	
 	<target name="jar" depends="build">
 		<copy todir="bin/lib">
 			<fileset dir="lib">
 				<include name="**/*.*"/>
	 		</fileset>
 		</copy>
 		
 		<path id="lib-classpath">
 			<fileset dir="lib" includes="**/*.jar" />
 		</path>
 		
 		<pathconvert property="my.classpath" pathsep=" " >
 			<mapper>
 		    	<chainedmapper>
 		        	<!-- 移除绝对路径 -->
 		        	<flattenmapper />
 		        	<!-- 加上lib前缀 -->
 		        	<globmapper from="*" to="lib/*" />
 		       </chainedmapper>
 		     </mapper>
 		     <path refid="lib-classpath" />
 		</pathconvert>
 		
 		<jar basedir="bin" destfile="${jar.name}" >
 			<include name="**/*"/>
 			<!-- define MANIFEST.MF -->
 			<manifest>
				<attribute name="Class-Path" value="${my.classpath}" />
 			</manifest>
 		</jar>
 	</target>
</project>

运行上面的这个ant脚本之后,我们的项目就会被打成一个jar包,截图如下:
如何使用eclipse调试Hadoop作业
            
    
    博客分类: Hadoop hadoopeclipse调试 

jar包有了之后,我们先测试在eclipse上如何把作业提交到hadoop集群上,只要把main方面的代码,稍加改动即可:
 /**
	  * main方法
	  * */
	 public static void main(String[] args) throws Exception{
		 String inputPath="hdfs://192.168.75.130:9000/root/output";	    
		  String outputPath="hdfs://192.168.75.130:9000/root/outputsort";
		  JobConf conf=new JobConf();
		 //Configuration conf=new Configuration();//可以使用这个conf来测试Local模式
		 //如果在src目录下有,mapred-site.xml文件,就不要此行代码
		 //注意此行代码也是在非Local模式下才使用
		 conf.set("mapred.job.tracker","192.168.75.130:9001");
		 // conf.get("mapred.job.tracker");
		 System.out.println("模式:  "+conf.get("mapred.job.tracker"));
		 // conf.setJar("tt.jar"); 非Local模式下使用
		  FileSystem  fs=FileSystem.get(conf);
		  Path pout=new Path(outputPath);
		  if(fs.exists(pout)){
			  fs.delete(pout, true);
			  System.out.println("存在此路径, 已经删除......");
		  } 		  
		  Job job=new Job(conf, "sort123"); 
          job.setJarByClass(TestSort.class);
          job.setOutputKeyClass(IntWritable.class);//告诉map,reduce输出K,V的类型
          FileInputFormat.setInputPaths(job, new Path(inputPath));  //输入路径
          FileOutputFormat.setOutputPath(job, new Path(outputPath));//输出路径  
          job.setMapperClass(SMapper.class);//map类
          job.setReducerClass(SReduce.class);//reduce类
          job.setSortComparatorClass(SSort.class);//排序类
//          job.setInputFormatClass(org.apache.hadoop.mapreduce.lib.input.TextInputFormat.class);
//		  job.setOutputFormatClass(TextOutputFormat.class);
          System.exit(job.waitForCompletion(true) ? 0 : 1);  
		 
		 
	}


运行程序,输出,如下:
模式:  192.168.75.130:9001
存在此路径, 已经删除......
WARN - JobClient.copyAndConfigureFiles(746) | Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
INFO - FileInputFormat.listStatus(237) | Total input paths to process : 1
WARN - NativeCodeLoader.<clinit>(52) | Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
WARN - LoadSnappy.<clinit>(46) | Snappy native library not loaded
INFO - JobClient.monitorAndPrintJob(1380) | Running job: job_201403252058_0035
INFO - JobClient.monitorAndPrintJob(1393) |  map 0% reduce 0%
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 0%
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 33%
INFO - JobClient.monitorAndPrintJob(1393) |  map 100% reduce 100%
INFO - JobClient.monitorAndPrintJob(1448) | Job complete: job_201403252058_0035
INFO - Counters.log(585) | Counters: 29
INFO - Counters.log(587) |   Job Counters 
INFO - Counters.log(589) |     Launched reduce tasks=1
INFO - Counters.log(589) |     SLOTS_MILLIS_MAPS=8498
INFO - Counters.log(589) |     Total time spent by all reduces waiting after reserving slots (ms)=0
INFO - Counters.log(589) |     Total time spent by all maps waiting after reserving slots (ms)=0
INFO - Counters.log(589) |     Launched map tasks=1
INFO - Counters.log(589) |     Data-local map tasks=1
INFO - Counters.log(589) |     SLOTS_MILLIS_REDUCES=9667
INFO - Counters.log(587) |   File Output Format Counters 
INFO - Counters.log(589) |     Bytes Written=26
INFO - Counters.log(587) |   FileSystemCounters
INFO - Counters.log(589) |     FILE_BYTES_READ=39
INFO - Counters.log(589) |     HDFS_BYTES_READ=140
INFO - Counters.log(589) |     FILE_BYTES_WRITTEN=117654
INFO - Counters.log(589) |     HDFS_BYTES_WRITTEN=26
INFO - Counters.log(587) |   File Input Format Counters 
INFO - Counters.log(589) |     Bytes Read=28
INFO - Counters.log(587) |   Map-Reduce Framework
INFO - Counters.log(589) |     Map output materialized bytes=39
INFO - Counters.log(589) |     Map input records=4
INFO - Counters.log(589) |     Reduce shuffle bytes=39
INFO - Counters.log(589) |     Spilled Records=8
INFO - Counters.log(589) |     Map output bytes=25
INFO - Counters.log(589) |     Total committed heap usage (bytes)=176033792
INFO - Counters.log(589) |     CPU time spent (ms)=1140
INFO - Counters.log(589) |     Combine input records=0
INFO - Counters.log(589) |     SPLIT_RAW_BYTES=112
INFO - Counters.log(589) |     Reduce input records=4
INFO - Counters.log(589) |     Reduce input groups=4
INFO - Counters.log(589) |     Combine output records=0
INFO - Counters.log(589) |     Physical memory (bytes) snapshot=259264512
INFO - Counters.log(589) |     Reduce output records=4
INFO - Counters.log(589) |     Virtual memory (bytes) snapshot=1460555776
INFO - Counters.log(589) |     Map output records=4

我们可以看出,运行正常,排序的内容如下:

dd	99999
a	784
b	12
c	-11

结果和local模式下的一样,还有一个与local模式不同的地方是,我们可以在http://192.168.75.130:50030/jobtracker.jsp的任务页面上找到刚才执行的任务状况,这一点在Local模式下运行程序,是没有的。/size]
如何使用eclipse调试Hadoop作业
            
    
    博客分类: Hadoop hadoopeclipse调试 
[size=large]最后,散仙再来看下,如何将jar包,上传到Linux提交作业到hadoop集群上。刚才,我们已经把jar给打好了,现在只需上传到linux上即可:
如何使用eclipse调试Hadoop作业
            
    
    博客分类: Hadoop hadoopeclipse调试 
然后开始执行shell命令运行程序:


如何使用eclipse调试Hadoop作业
            
    
    博客分类: Hadoop hadoopeclipse调试 
到此,我们已经完美的执行成功,最后一点需要注意的是,在执行排序任务时,如果出现异常:
java.lang.Exception: java.io.IOException: Type mismatch in key from map: expected org.apache.hadoop.io.LongWritable, recieved org.apache.hadoop.io.IntWritable
	at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:354)
Caused by: java.io.IOException: Type mismatch in key from map: expected org.apache.hadoop.io.LongWritable, recieved org.apache.hadoop.io.IntWritable
	at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.collect(MapTask.java:1019)
	at org.apache.hadoop.mapred.MapTask$NewOutputCollector.write(MapTask.java:690)
	at org.apache.hadoop.mapreduce.TaskInputOutputContext.write(TaskInputOutputContext.java:80)
	at com.qin.sort.TestSort$SMapper.map(TestSort.java:51)
	at com.qin.sort.TestSort$SMapper.map(TestSort.java:1)
	at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:145)
	at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:764)
	at org.apache.hadoop.mapred.MapTask.run(MapTask.java:364)
	at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:223)
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
	at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334)
	at java.util.concurrent.FutureTask.run(FutureTask.java:166)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603)
	at java.lang.Thread.run(Thread.java:722)


这个异常的出现,多半是因为,我们没有指定输出的Key,或者Value,或者指定的类型不一致,导致,我们只需要正确的设置输出的Key或者Value的类型即可.
job.setOutputKeyClass(IntWritable.class);
		   job.setOutputValueClass(Text.class);



设置完后,就可以正常测试运行了。





  • 如何使用eclipse调试Hadoop作业
            
    
    博客分类: Hadoop hadoopeclipse调试 
  • 大小: 100.9 KB
  • 如何使用eclipse调试Hadoop作业
            
    
    博客分类: Hadoop hadoopeclipse调试 
  • 大小: 80.8 KB
  • 如何使用eclipse调试Hadoop作业
            
    
    博客分类: Hadoop hadoopeclipse调试 
  • 大小: 108.3 KB
  • 如何使用eclipse调试Hadoop作业
            
    
    博客分类: Hadoop hadoopeclipse调试 
  • 大小: 943.9 KB