BERT学习笔记:run-pretraining.py
BERT 源码初探之 run_pretraining.py
本文源码来源于 Github上的BERT 项目中的 run_pretraining.py 文件。阅读本文需要对Attention Is All You Need以及BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding两篇论文有所了解,以及部分关于深度学习、自然语言处理和Tensorflow的储备知识。
0 前言
- 关于Tensorflow:本文基于谷歌官方在GitHub上公布的BERT预训练模型,基于Tensorflow 1.13.1 运行。有关Tensorflow的部分建议参照官方网站。
- 关于Transformer:Transformer是Google提出的一种完全基于注意力机制的模型,想要对齐进行了解请参照官方论文Attention Is All You Need或者我的另一篇博客Transformer 学习笔记。
- 关于BERT:BERT也是Google提出的一个基于Transformer的预训练网络模型,更多和该模型有关的内容请参照官方论文BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding、官方代码实现Github上的BERT以及我的另一篇博客BERT 学习笔记。
1 简介
略。
2 源码解释
2.1 参数设置
2.1.1 必须参数
flags.DEFINE_string(
"bert_config_file", None,
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string(
"input_file", None,
"Input TF example files (can be a glob or comma separated).")
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written.")
- BERT 的 JSON 格式的配置文件的路径
- 输入文件
- 输出目录
2.2.2 其他参数
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded. Must match data generation.")
- 用于初始化的检查点
- 最大句子长度
flags.DEFINE_integer(
"max_predictions_per_seq", 20,
"Maximum number of masked LM predictions per sequence. "
"Must match data generation.")
每个句子的最大 MLM 预测数,必须和数据匹配。关于 MLM 模型,详情请参照 BERT论文。
flags.DEFINE_bool("do_train", False, "Whether to run training.")
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_integer("num_train_steps", 100000, "Number of training steps.")
flags.DEFINE_integer("num_warmup_steps", 10000, "Number of warmup steps.")
flags.DEFINE_integer("save_checkpoints_steps", 1000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
flags.DEFINE_integer("max_eval_steps", 100, "Maximum number of eval steps.")
- 是否进行训练
- 是否在验证集上进行验证
- 训练批大小
- 验证批大小
- 初始化学习率
- 训练步数
- warmup步数
- 保存checkpoint的间隔
- 每隔多少步进行一次估计
- 评估步数的最大值
2.2.3 TPU相关
tf.flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
这部分参数和TPU配置相关,不在此详细说明,详情请参照上一篇博客或者自行了解和TPU有关的知识。
2.2 建立模型
2.2.1 为TPU估计器自定义一个建立模型的方法(model_fn_builder)
def model_fn_builder(bert_config, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
def model_fn(features, labels, mode, params):
……
return model_fn
我们需要根据自己的设置为TPU的Estimator来自定义一个建立模型的函数。
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
打印特征信息。
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
masked_lm_positions = features["masked_lm_positions"]
masked_lm_ids = features["masked_lm_ids"]
masked_lm_weights = features["masked_lm_weights"]
next_sentence_labels = features["next_sentence_labels"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
获取特征
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
根据特征和配置文件建立 BERT 模型
(masked_lm_loss,
masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
bert_config, model.get_sequence_output(), model.get_embedding_table(),
masked_lm_positions, masked_lm_ids, masked_lm_weights)
(next_sentence_loss, next_sentence_example_loss,
next_sentence_log_probs) = get_next_sentence_output(
bert_config, model.get_pooled_output(), next_sentence_labels)
total_loss = masked_lm_loss + next_sentence_loss
获取 MLM 部分的输出和 next sentence 部分的输出,并计算总损失。
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
获取需要训练的变量名称,和检查点中的变量取并集。
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
打印所有需要训练的变量名称,是否来源与检查点,和详细信息。
output_spec = None
准备构建输出
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
在训练模式下获取TPUEstimatorSpec
elif mode == tf.estimator.ModeKeys.EVAL:
如果是在验证模式下,首先需要构建计算损失和准确度的函数
def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
masked_lm_weights, next_sentence_example_loss,
next_sentence_log_probs, next_sentence_labels):
masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
[-1, masked_lm_log_probs.shape[-1]])
masked_lm_predictions = tf.argmax(
masked_lm_log_probs, axis=-1, output_type=tf.int32)
masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
masked_lm_accuracy = tf.metrics.accuracy(
labels=masked_lm_ids,
predictions=masked_lm_predictions,
weights=masked_lm_weights)
masked_lm_mean_loss = tf.metrics.mean(
values=masked_lm_example_loss, weights=masked_lm_weights)
next_sentence_log_probs = tf.reshape(
next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
next_sentence_predictions = tf.argmax(
next_sentence_log_probs, axis=-1, output_type=tf.int32)
next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
next_sentence_accuracy = tf.metrics.accuracy(
labels=next_sentence_labels, predictions=next_sentence_predictions)
next_sentence_mean_loss = tf.metrics.mean(
values=next_sentence_example_loss)
return {
"masked_lm_accuracy": masked_lm_accuracy,
"masked_lm_loss": masked_lm_mean_loss,
"next_sentence_accuracy": next_sentence_accuracy,
"next_sentence_loss": next_sentence_mean_loss,
}
构建计算损失和准确度的函数如上所示
eval_metrics = (metric_fn, [
masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
masked_lm_weights, next_sentence_example_loss,
next_sentence_log_probs, next_sentence_labels
])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
然后构建输出
else:
raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))
return output_spec
如果既不是训练又不是验证那么就返回 ValueError,否则就返回 output_spec
2.2.2 获取 MLM 部分的 loss 和 log probs(get_masked_lm_output)
def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
label_ids, label_weights):
input_tensor = gather_indexes(input_tensor, positions)
定义方法,获取输入向量
with tf.variable_scope("cls/predictions"):
input_tensor = tf.layers.dense(
input_tensor,
units=bert_config.hidden_size,
activation=modeling.get_activation(bert_config.hidden_act),
kernel_initializer=modeling.create_initializer(
bert_config.initializer_range))
input_tensor = modeling.layer_norm(input_tensor)
在输入层上搭建一个在预训练前不被使用的全连接层。
output_bias = tf.get_variable(
"output_bias",
shape=[bert_config.vocab_size],
initializer=tf.zeros_initializer())
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
输出的权重和输入嵌入相同,但是在输出中有一个对应每个 token 的权重。
label_ids = tf.reshape(label_ids, [-1])
label_weights = tf.reshape(label_weights, [-1])
one_hot_labels = tf.one_hot(
label_ids, depth=bert_config.vocab_size, dtype=tf.float32)
关于 label 的一些格式处理,处理完之后把 label 转化成 one hot 类型的输出。
per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
numerator = tf.reduce_sum(label_weights * per_example_loss)
denominator = tf.reduce_sum(label_weights) + 1e-5
loss = numerator / denominator
return (loss, per_example_loss, log_probs)
计算 loss ,并返回最终的结果。
2.2.3 获取 next sentence prediction(下一句预测) 部分的 loss 以及 log probs (get_next_sentence_output)
def get_next_sentence_output(bert_config, input_tensor, labels):
定义方法头
注意,这是一个简单的二分类问题,0代表是真实的下一句,而1代表的是随机的句子,具体内容请参考BERT论文。
with tf.variable_scope("cls/seq_relationship"):
output_weights = tf.get_variable(
"output_weights",
shape=[2, bert_config.hidden_size],
initializer=modeling.create_initializer(bert_config.initializer_range))
output_bias = tf.get_variable(
"output_bias", shape=[2], initializer=tf.zeros_initializer())
获取输出的权重(weights)和偏置值(bias)。
logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
log_probs = tf.nn.log_softmax(logits, axis=-1)
labels = tf.reshape(labels, [-1])
one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, log_probs)
计算所需的返回值并返回。
2.2.4 在一个小批次上收集特定位置的向量(gather_indexes)
def gather_indexes(sequence_tensor, positions):
"""Gathers the vectors at the specific positions over a minibatch."""
sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3)
batch_size = sequence_shape[0]
seq_length = sequence_shape[1]
width = sequence_shape[2]
flat_offsets = tf.reshape(
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
flat_positions = tf.reshape(positions + flat_offsets, [-1])
flat_sequence_tensor = tf.reshape(sequence_tensor,
[batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor
此方法比较简单容易理解,目的就是为了获取一个句子张量上特定位置的张量。
2.3 自定义输入函数
def input_fn_builder(input_files,
max_seq_length,
max_predictions_per_seq,
is_training,
num_cpu_threads=4):
此方法定义,目的是为了获得一个用于获取输入数据的 input_fn 函数。
def input_fn(params):
batch_size = params["batch_size"]
name_to_features = {
"input_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask":
tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids":
tf.FixedLenFeature([max_seq_length], tf.int64),
"masked_lm_positions":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_ids":
tf.FixedLenFeature([max_predictions_per_seq], tf.int64),
"masked_lm_weights":
tf.FixedLenFeature([max_predictions_per_seq], tf.float32),
"next_sentence_labels":
tf.FixedLenFeature([1], tf.int64),
}
开始构建真正的输入函数,首先获取批大小以及根据名称定义的特征
if is_training:
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
d = d.repeat()
d = d.shuffle(buffer_size=len(input_files))
cycle_length = min(num_cpu_threads, len(input_files))
d = d.apply(
tf.contrib.data.parallel_interleave(
tf.data.TFRecordDataset,
sloppy=is_training,
cycle_length=cycle_length))
d = d.shuffle(buffer_size=100)
在训练状态下,我们希望尽可能地并行读入文件并且打乱顺序
- cycle_length 代表了能够并行读入文件的数量
- sloppy 模式代表交叉可能会不准确,这增大了训练状态下的随机性
else:
d = tf.data.TFRecordDataset(input_files)
d = d.repeat()
在验证状态下,我们并不希望打乱顺序,同时是否并行也并不关心。同时我们希望用固定的训练步数去训练。
d = d.apply(
tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
num_parallel_batches=num_cpu_threads,
drop_remainder=True))
return d
- 在训练过程中我们需要 drop 掉残留量因为 TPU 需要固定的尺寸。
- 而在验证中我们假设在 CPU 或 GPU 上进行计算,所以我们不想 drop 多余的数据。
def _decode_record(record, name_to_features):
example = tf.parse_single_example(record, name_to_features)
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
这个方法把一个 decord 解码成 tensorflow Example ,tf.Example 只支持int64,但是 TPU 只支持 int32 ,因此把所有的 int64 转换成 int32。
2.4 main(_) 函数
2.4.1 初始化部分
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
if not FLAGS.do_train and not FLAGS.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
设置日志打印等级,确保 FLAGS.do_train 和 FLAGS.do_eval 至少有一个为 True 。
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
tf.gfile.MakeDirs(FLAGS.output_dir)
加载配置文件,创建输出目录。
input_files = []
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))
tf.logging.info("*** Input Files ***")
for input_file in input_files:
tf.logging.info(" %s" % input_file)
获取输入文件的目录,并打印出来。
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
如果使用TPU那么就创建一个TPU集群分析器。
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
构建 run config
model_fn = model_fn_builder(
bert_config=bert_config,
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=FLAGS.num_train_steps,
num_warmup_steps=FLAGS.num_warmup_steps,
use_tpu=FLAGS.use_tpu,
use_one_hot_embeddings=FLAGS.use_tpu)
构建 model_fn 方法
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size)
构建估计器
2.4.2 训练部分
if FLAGS.do_train:
tf.logging.info("***** Running training *****")
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
train_input_fn = input_fn_builder(
input_files=input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=True)
estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)
构建输入方法,进行训练。
2.4.3 验证部分
if FLAGS.do_eval:
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
eval_input_fn = input_fn_builder(
input_files=input_files,
max_seq_length=FLAGS.max_seq_length,
max_predictions_per_seq=FLAGS.max_predictions_per_seq,
is_training=False)
result = estimator.evaluate(
input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
with tf.gfile.GFile(output_eval_file, "w") as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
构建输入函数,进行验证,保存并打印验证结果。
2.5 主程序入口
if __name__ == "__main__":
flags.mark_flag_as_required("input_file")
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()
定义必须的参数,运行程序。
3 结论
上一篇博文介绍了用BERT模型做分类任务,这篇介绍了如何用自己的数据集对BERT模型进行预训练,接下来一篇的内容应该是
- BERT 模型代码阅读
- BERT 模型其他使用方法
- 关于 Tensorflow 的 预创建Estimator 和 自定义Estimator 的学习
三选一了吧。Google 的代码阅读起来是真的流畅啊。
上一篇: Attack
下一篇: P1226 【模板】快速幂||取余运算