欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

three.js镜头追踪的移动效果

程序员文章站 2022-03-26 19:31:34
...

达到效果

指定一条折线路径,镜头沿着路径向前移动,类似第一视角走在当前路径上。

实现思路

很简单画一条折线路径,将镜头位置动态绑定在当前路径上,同时设置镜头朝向路径正前方。

实现难点

1、折现变曲线
画一条折线路径,通常将每一个转折点标出来画出的THREE.Line,会变成曲线。
难点解答:
1.1、以转折点分隔,一段一段的直线来画,上一个线段的终点是下一个线段的起点。
1.2、画一条折线,在转折点处,通过多加一个点,构成一个特别细微的短弧线。
2、镜头朝向不受控
对于controls绑定的camera,修改camera的lookAt和rotation并无反应。
难点解答:
相机观察方向camera.lookAt设置无效需要设置controls.target
3、镜头位置绑定不受控
对于controls绑定的camera,动态修改camera的位置总存在一定错位。
难点解答:
苍天啊,这个问题纠结我好久,怎么设置都不对,即便参考上一个问题控制controls.object.position也不对。
结果这是一个假的难点,镜头位置是受控的,感觉不受控是因为,设置了相机距离原点的最近距离!!!导致转弯时距离太近镜头会往回退着转弯,碰到旁边的东西啊,哭唧唧。

// 设置相机距离原点的最近距离 即可控制放大限值
// controls.minDistance = 4
// 设置相机距离原点的最远距离 即可控制缩小限值
controls.maxDistance = 40

4、镜头抖动
镜头抖动,怀疑是设置位置和朝向时坐标被四舍五入时,导致一会上一会下一会左一会右的抖动。
难点解答:
开始以为是我整个场景太小了,放大场景,拉长折线,拉远相机,并没有什么用。
最后发现是在animate()动画中设置相机位置,y坐标加了0.01:

controls.object.position.set(testList[testIndex].x, testList[testIndex].y + 0.01, testList[testIndex].z)

相机位置坐标和相机朝向坐标不在同一平面,导致的抖动,将+0.01去掉就正常了。

controls.object.position.set(testList[testIndex].x, testList[testIndex].y, testList[testIndex].z)

最终实现方法

在此通过两个相机,先观察相机cameraTest的移动路径和转向,再切换成原始相机camera。
公共代码如下:

// 外层相机,原始相机
let camera = null
// 内层相机和相机辅助线
let cameraTest = null
let cameraHelper = null
// 控制器
let controls = null
// 折线点的集合和索引
let testList = []
let testIndex = 0

initCamera () {
  // 原始相机
  camera = new THREE.PerspectiveCamera(45, div3D.clientWidth / div3D.clientHeight, 0.1, 1000)
  camera.position.set(16, 6, 10)
  // scene.add(camera)
  // camera.lookAt(new THREE.Vector3(0, 0, 0))
  // 设置第二个相机
  cameraTest = new THREE.PerspectiveCamera(45, div3D.clientWidth / div3D.clientHeight, 0.1, 1000)
  cameraTest.position.set(0, 0.6, 0)
  cameraTest.lookAt(new THREE.Vector3(0, 0, 0))
  cameraTest.rotation.x = 0
  // 照相机帮助线
  cameraHelper = new THREE.CameraHelper(cameraTest)
  scene.add(cameraTest)
  scene.add(cameraHelper)
}
// 初始化控制器
initControls () {
  controls = new OrbitControls(camera, renderer.domElement)
}

方法一:镜头沿线推进

inspectCurveList () {
  let curve = new THREE.CatmullRomCurve3([
    new THREE.Vector3(2.9, 0.6, 7),
    new THREE.Vector3(2.9, 0.6, 1.6),
    new THREE.Vector3(2.89, 0.6, 1.6), // 用于直角转折
    new THREE.Vector3(2.2, 0.6, 1.6),
    new THREE.Vector3(2.2, 0.6, 1.59), // 用于直角转折
    new THREE.Vector3(2.2, 0.6, -5),
    new THREE.Vector3(2.21, 0.6, -5), // 用于直角转折
    new THREE.Vector3(8, 0.6, -5),
    new THREE.Vector3(8, 0.6, -5.01), // 用于直角转折
    new THREE.Vector3(8, 0.6, -17),
    new THREE.Vector3(7.99, 0.6, -17), // 用于直角转折
    new THREE.Vector3(-1, 0.6, -17),
    // new THREE.Vector3(-2, 0.6, -17.01), // 用于直角转折
    new THREE.Vector3(-3, 0.6, -20.4),
    new THREE.Vector3(-2, 0.6, 5)
  ])
  let geometry = new THREE.Geometry()
  let gap = 1000
  for (let i = 0; i < gap; i++) {
    let index = i / gap
    let point = curve.getPointAt(index)
    let position = point.clone()
    curveList.push(position)
    geometry.vertices.push(position)
  }
  // geometry.vertices = curve.getPoints(500)
  // curveList = geometry.vertices
  // let material = new THREE.LineBasicMaterial({color: 0x3cf0fa})
  // let line = new THREE.Line(geometry, material) // 连成线
  // line.name = 'switchInspectLine'
  // scene.add(line) // 加入到场景中
}
// 模仿管道的镜头推进
if (curveList.length !== 0) {
	if (curveIndex < curveList.length - 20) {
	  // 推进里层相机
	  /* cameraTest.position.set(curveList[curveIndex].x, curveList[curveIndex].y, curveList[curveIndex].z)
	  controls = new OrbitControls(cameraTest, labelRenderer.domElement) */
	  // 推进外层相机
	  // camera.position.set(curveList[curveIndex].x, curveList[curveIndex].y + 1, curveList[curveIndex].z)
	  controls.object.position.set(curveList[curveIndex].x, curveList[curveIndex].y, curveList[curveIndex].z)
	  controls.target = curveList[curveIndex + 20]
	  // controls.target = new THREE.Vector3(curveList[curveIndex + 2].x, curveList[curveIndex + 2].y, curveList[curveIndex + 2].z)
	  curveIndex += 1
	} else {
	  curveList = []
	  curveIndex = 0
	  this.inspectSwitch = false
	  this.addRoomLabel()
	  this.removeLabel()
	  // 移除场景中的线
	  // let removeLine = scene.getObjectByName('switchInspectLine')
	  // if (removeLine !== undefined) {
	  //   scene.remove(removeLine)
	  // }
	  // 还原镜头位置
	  this.animateCamera({x: 16, y: 6, z: 10}, {x: 0, y: 0, z: 0})
	}
}

方法二:使用tween动画

inspectTween () {
  let wayPoints = [
    {
      point: {x: 2.9, y: 0.6, z: 1.6},
      camera: {x: 2.9, y: 0.6, z: 7},
      time: 3000
    },
    {
      point: {x: 2.2, y: 0.6, z: 1.6},
      camera: {x: 2.9, y: 0.6, z: 1.6},
      time: 5000
    },
    {
      point: {x: 2.2, y: 0.6, z: -5},
      camera: {x: 2.2, y: 0.6, z: 1.6},
      time: 2000
    },
    {
      point: {x: 8, y: 0.6, z: -5},
      camera: {x: 2.2, y: 0.6, z: -5},
      time: 6000
    },
    {
      point: {x: 8, y: 0.6, z: -17},
      camera: {x: 8, y: 0.6, z: -5},
      time: 3000
    },
    {
      point: {x: -2, y: 0.6, z: -17},
      camera: {x: 8, y: 0.6, z: -17},
      time: 3000
    },
    {
      point: {x: -2, y: 0.6, z: -20.4},
      camera: {x: -2, y: 0.6, z: -17},
      time: 3000
    },
    {
      point: {x: -2, y: 0.6, z: 5},
      camera: {x: -3, y: 0.6, z: -17},
      time: 3000
    },
    // {
    //   point: {x: -2, y: 0.6, z: 5},
    //   camera: {x: -2, y: 0.6, z: -20.4}
    // },
    {
      point: {x: 0, y: 0, z: 0},
      camera: {x: -2, y: 0.6, z: 5},
      time: 3000
    }
  ]
  this.animateInspect(wayPoints, 0)
}
animateInspect (point, k) {
  let self = this
  let time = 3000
  if (point[k].time) {
    time = point[k].time
  }
  let count = point.length
  let target = point[k].point
  let position = point[k].camera
  let tween = new TWEEN.Tween({
    px: camera.position.x, // 起始相机位置x
    py: camera.position.y, // 起始相机位置y
    pz: camera.position.z, // 起始相机位置z
    tx: controls.target.x, // 控制点的中心点x 起始目标位置x
    ty: controls.target.y, // 控制点的中心点y 起始目标位置y
    tz: controls.target.z // 控制点的中心点z 起始目标位置z
  })
  tween.to({
    px: position.x,
    py: position.y,
    pz: position.z,
    tx: target.x,
    ty: target.y,
    tz: target.z
  }, time)
  tween.onUpdate(function () {
    camera.position.x = this.px
    camera.position.y = this.py
    camera.position.z = this.pz
    controls.target.x = this.tx
    controls.target.y = this.ty
    controls.target.z = this.tz
    // controls.update()
  })
  tween.onComplete(function () {
    // controls.enabled = true
    if (self.inspectSwitch && k < count - 1) {
      self.animateInspect(point, k + 1)
    } else {
      self.inspectSwitch = false
      self.addRoomLabel()
      self.removeLabel()
    }
    // callBack && callBack()
  })
  // tween.easing(TWEEN.Easing.Cubic.InOut)
  tween.start()
},

方法比较:

方法一:镜头控制简单,但是不够平滑。
方法二:镜头控制麻烦,要指定当前点和目标点,镜头切换平滑但不严格受控。
个人喜欢方法二,只要找好了线路上的控制点,动画效果更佳更容易控制每段动画的时间。

——————————————————————

其他方法

过程中的使用过的其他方法,仅做记录用。

方法一:绘制一条折线+animate镜头推进

// 获取折线点数组
testInspect () {
	// 描折线点,为了能使一条折线能直角转弯,特添加“用于直角转折”的辅助点,尝试将所有标为“用于直角转折”的点去掉,折线马上变曲线。
	let curve = new THREE.CatmullRomCurve3([
	    new THREE.Vector3(2.9, 0.6, 7),
	    new THREE.Vector3(2.9, 0.6, 1.6),
	    new THREE.Vector3(2.89, 0.6, 1.6), // 用于直角转折
	    new THREE.Vector3(2.2, 0.6, 1.6),
	    new THREE.Vector3(2.2, 0.6, 1.59), // 用于直角转折
	    new THREE.Vector3(2.2, 0.6, -5),
	    new THREE.Vector3(2.21, 0.6, -5), // 用于直角转折
	    new THREE.Vector3(8, 0.6, -5),
	    new THREE.Vector3(8, 0.6, -5.01), // 用于直角转折
	    new THREE.Vector3(8, 0.6, -17),
	    new THREE.Vector3(7.99, 0.6, -17), // 用于直角转折
	    new THREE.Vector3(-2, 0.6, -17),
	    new THREE.Vector3(-2, 0.6, -17.01), // 用于直角转折
	    new THREE.Vector3(-2, 0.6, -20.4),
	    new THREE.Vector3(-2, 0.6, 5),
	])
	let material = new THREE.LineBasicMaterial({color: 0x3cf0fa})
	let geometry = new THREE.Geometry()
	geometry.vertices = curve.getPoints(1500)
	let line = new THREE.Line(geometry, material) // 连成线
	scene.add(line) // 加入到场景中
	testList = geometry.vertices
}
// 场景动画-推进相机
animate () {
  // 模仿管道的镜头推进
  if (testList.length !== 0) {
    if (testIndex < testList.length - 2) {
      // 推进里层相机
      // cameraTest.position.set(testList[testIndex].x, testList[testIndex].y, testList[testIndex].z)
      // controls = new OrbitControls(cameraTest, labelRenderer.domElement)
      // controls.target = new THREE.Vector3(testList[testIndex + 2].x, testList[testIndex + 2].y, testList[testIndex + 2].z)
      // testIndex += 1
      // 推进外层相机
      camera.position.set(testList[testIndex].x, testList[testIndex].y, testList[testIndex].z)
      controls.target = new THREE.Vector3(testList[testIndex + 2].x, testList[testIndex + 2].y, testList[testIndex + 2].z)
      testIndex += 1
    } else {
      testList = []
      testIndex = 0
    }
  }
}

说明:
推进里层相机,相机移动和转向正常,且在直角转弯处,镜头转动>90°再切回90°;
推进外层相机,镜头突然开始乱切(因为设置了最近距离),且在直角转弯处,镜头转动>90°再切回90°。

方法二:绘制多条线段+animate镜头推进

// 获取折线点数组
testInspect () {
	let points = [
	    [2.9, 7],
	    [2.9, 1.6],
	    [2.2, 1.6],
	    [2.2, -5],
	    [8, -5],
	    [8, -17],
	    [-2, -17],
	    [-2, -20.4],
	    [-2, 5]
	  ]
	testList = this.linePointList(points, 0.6)
}
linePointList (xz, y) {
  let allPoint = []
  for (let i = 0; i < xz.length - 1; i++) {
    if (xz[i][0] === xz[i + 1][0]) {
      let gap = (xz[i][1] - xz[i + 1][1]) / 100
      for (let j = 0; j < 100; j++) {
        allPoint.push(new THREE.Vector3(xz[i][0], y, xz[i][1] - gap * j))
      }
    } else {
      let gap = (xz[i][0] - xz[i + 1][0]) / 100
      for (let j = 0; j < 100; j++) {
        allPoint.push(new THREE.Vector3(xz[i][0] - gap * j, y, xz[i][1]))
      }
    }
  }
  return allPoint
}
// 场景动画-推进相机
animate () {
  // 模仿管道的镜头推进
  if (testList.length !== 0) {
    if (testIndex < testList.length - 2) {
      // 推进里层相机
      // cameraTest.position.set(testList[testIndex].x, testList[testIndex].y, testList[testIndex].z)
      // controls = new OrbitControls(cameraTest, labelRenderer.domElement)
      // controls.target = new THREE.Vector3(testList[testIndex + 2].x, testList[testIndex + 2].y, testList[testIndex + 2].z)
      // testIndex += 1
      // 推进外层相机
      camera.position.set(testList[testIndex].x, testList[testIndex].y, testList[testIndex].z)
      controls.target = new THREE.Vector3(testList[testIndex + 2].x, testList[testIndex + 2].y, testList[testIndex + 2].z)
      testIndex += 1
    } else {
      testList = []
      testIndex = 0
    }
  }
}

说明:
推进里层相机,相机移动和转向正常,直角转弯处突兀,因为是多个线段拼接出来的点;
推进外层相机,相机移动有些许错位(因为设置了最近距离),相机转向正常,但是直角转弯处突兀,因为是多个线段拼接出来的点。

方法三:绘制多条线段+tween动画变化镜头

// 获取折线点数组
testInspect () {
	let points = [
        [2.9, 7],
        [2.9, 1.6],
        [2.2, 1.6],
        [2.2, -5],
        [8, -5],
        [8, -17],
        [-2, -17],
        [-2, -20.4],
        [-2, 5]
      ]
    this.tweenCameraTest(points, 0) // tween动画-控制里层相机
    // this.tweenCamera(points, 0) // tween动画-控制外层相机
}
// tween动画-控制里层相机
tweenCameraTest (point, k) {
  let self = this
  let count = point.length
  let derection = 0
  if (cameraTest.position.x === point[k][0]) {
    // x相同
    if (cameraTest.position.z - point[k][1] > 0) {
      derection = 0
    } else {
      derection = Math.PI
    }
  } else {
    // z相同
    if (cameraTest.position.x - point[k][0] > 0) {
      derection = Math.PI / 2
    } else {
      derection = - Math.PI / 2
    }
  }
  cameraTest.rotation.y = derection
  let tween = new TWEEN.Tween({
    px: cameraTest.position.x, // 起始相机位置x
    py: cameraTest.position.y, // 起始相机位置y
    pz: cameraTest.position.z // 起始相机位置z
  })
  tween.to({
    px: point[k][0],
    py: 0.6,
    pz: point[k][1]
  }, 3000)
  tween.onUpdate(function () {
    cameraTest.position.x = this.px
    cameraTest.position.y = this.py
    cameraTest.position.z = this.pz
  })
  tween.onComplete(function () {
    if (k < count - 1) {
      self.tweenCameraTest(point, k + 1)
    } else {
      console.log('结束了!!!!!!')
    }
    // callBack && callBack()
  })
  // tween.easing(TWEEN.Easing.Cubic.InOut)
  tween.start()
}
// tween动画-控制外层相机
tweenCamera (point, k) {
  let self = this
  let count = point.length
  let derection = 0
  if (camera.position.x === point[k][0]) {
    // x相同
    if (camera.position.z - point[k][1] > 0) {
      derection = 0
    } else {
      derection = Math.PI
    }
  } else {
    // z相同
    if (camera.position.x - point[k][0] > 0) {
      derection = Math.PI / 2
    } else {
      derection = - Math.PI / 2
    }
  }
  camera.rotation.y = derection
  let tween = new TWEEN.Tween({
    px: camera.position.x, // 起始相机位置x
    py: camera.position.y, // 起始相机位置y
    pz: camera.position.z // 起始相机位置z
  })
  tween.to({
    px: point[k][0],
    py: 0.6,
    pz: point[k][1]
  }, 3000)
  tween.onUpdate(function () {
    camera.position.x = this.px
    camera.position.y = this.py
    camera.position.z = this.pz
  })
  tween.onComplete(function () {
    if (k < count - 1) {
      self.tweenCamera(point, k + 1)
    } else {
      console.log('结束了!!!!!!')
    }
    // callBack && callBack()
  })
  // tween.easing(TWEEN.Easing.Cubic.InOut)
  tween.start()
}

说明:
控制里层相机使用tweenCameraTest()方法,相机移动正常,通过rotation.y控制直接转向,转弯时略突兀因为没有动画控制rotation.y转动;
控制外层相机使用tweenCamera()方法,相机移动有些许错位(因为设置了最近距离),相机转向完全不受控,似乎始终看向坐标原点。

方法四:优化方法一,绘制一条折线+animate镜头推进

// 获取折线点数组
testInspect () {
	// 描折线点,为了能使一条折线能直角转弯,特添加“用于直角转折”的辅助点,尝试将所有标为“用于直角转折”的点去掉,折线马上变曲线。
	let curve = new THREE.CatmullRomCurve3([
	    new THREE.Vector3(2.9, 0.6, 7),
	    new THREE.Vector3(2.9, 0.6, 1.6),
	    new THREE.Vector3(2.89, 0.6, 1.6), // 用于直角转折
	    new THREE.Vector3(2.2, 0.6, 1.6),
	    new THREE.Vector3(2.2, 0.6, 1.59), // 用于直角转折
	    new THREE.Vector3(2.2, 0.6, -5),
	    new THREE.Vector3(2.21, 0.6, -5), // 用于直角转折
	    new THREE.Vector3(8, 0.6, -5),
	    new THREE.Vector3(8, 0.6, -5.01), // 用于直角转折
	    new THREE.Vector3(8, 0.6, -17),
	    new THREE.Vector3(7.99, 0.6, -17), // 用于直角转折
	    new THREE.Vector3(-2, 0.6, -17),
	    new THREE.Vector3(-2, 0.6, -17.01), // 用于直角转折
	    new THREE.Vector3(-2, 0.6, -20.4),
	    new THREE.Vector3(-2, 0.6, 5),
	])
	let material = new THREE.LineBasicMaterial({color: 0x3cf0fa})
    let geometry = new THREE.Geometry()
    let gap = 500
    for (let i = 0; i < gap; i++) {
        let index = i / gap
        let point = curve.getPointAt(index)
        let position = point.clone()
        testList.push(position) // 通过此方法获取点比curve.getPoints(1500)更好,不信你试试,用getPoints获取,镜头会有明显的俯视效果不知为何。
        geometry.vertices.push(position)
    }
    let line = new THREE.Line(geometry, material) // 连成线
    scene.add(line) // 加入到场景中
}
// 场景动画-推进外层相机
animate () {
  // 模仿管道的镜头推进
  if (testList.length !== 0) {
    if (testIndex < testList.length - 2) {
      // 推进里层相机
      // cameraTest.position.set(testList[testIndex].x, testList[testIndex].y, testList[testIndex].z)
      // controls = new OrbitControls(cameraTest, labelRenderer.domElement)
      // 推进外层相机
      // camera.position.set(testList[testIndex].x, testList[testIndex].y + 0.01, testList[testIndex].z)
      controls.object.position.set(testList[testIndex].x, testList[testIndex].y + 0.01, testList[testIndex].z) // 稍微讲相机位置上移,就不会出现似乎乱切镜头穿过旁边物体的效果。
      controls.target = testList[testIndex + 2]
      // controls.target = new THREE.Vector3(testList[testIndex + 2].x, testList[testIndex + 2].y, testList[testIndex + 2].z)
      testIndex += 1
    } else {
      testList = []
      testIndex = 0
    }
  }
}

说明:
解决了,直角转弯处,镜头转动>90°再切回90°的问题。
解决了,推进外层相机镜头乱切的问题。
但是,相机移动在转弯时有明显的往后闪(因为设置了最近距离),并不是严格跟随折线前进。

相关标签: threejs