欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PID控制算法

程序员文章站 2022-03-26 18:23:41
...

PID控制算法是一个在工业控制应用中常见的反馈回路算法,它把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,从而使得整个系统更加准确而稳定。
PID控制算法由比例单元(Proportional)、积分单元(Integral)和微分单元(Derivative)三部分组成,通过这三个单元的增益, Kp,KI和Kd来达到理想的控制效果。
PID主要适用于基本上线性,且动态特性不随时间变化的系统。
PID控制算法

下面我们主要了解PID控制算法的细节及其在机器人/自动驾驶领域的应用。在机器人/自动驾驶领域,一个常见的任务就是使得机器人/自动驾驶车辆移动到目标轨迹上。如下图所示,车辆以速度v前进,我们的目标是让其沿着Reference Trajectory行驶。Crosstrack Error是目标偏差,PID的目标就是不断缩小该偏差,使其无限接近于0。
PID控制算法

1.车辆模型
为了解决上述问题,需要先定义一个车辆模型,用以描述车辆的属性和运动特性。(代码来自Udacity的免费Artificial Intelligence for Robotics【2】)。

import random
import numpy as np
import matplotlib.pyplot as plt

class robot(object):
    def __init__(self, length=20.0):
        """
        Creates robot and initializes location/orientation to 0, 0, 0.
        """
        self.x = 0.0
        self.y = 0.0
        self.orientation = 0.0
        self.length = length
        self.steering_noise = 0.0
        self.distance_noise = 0.0
        self.steering_drift = 0.0

    def set(self, x, y, orientation):
        """
        Sets a robot coordinate.
        """
        self.x = x
        self.y = y
        self.orientation = orientation % (2.0 * np.pi)

    def set_noise(self, steering_noise, distance_noise):
        """
        Sets the noise parameters.
        """
        # makes it possible to change the noise parameters
        # this is often useful in particle filters
        self.steering_noise = steering_noise
        self.distance_noise = distance_noise

    def set_steering_drift(self, drift):
        """
        Sets the systematical steering drift parameter
        """
        self.steering_drift = drift

    def move(self, steering, distance, tolerance=0.001, max_steering_angle=np.pi / 4.0):
        """
        steering = front wheel steering angle, limited by max_steering_angle
        distance = total distance driven, most be non-negative
        """
        if steering > max_steering_angle:
            steering = max_steering_angle
        if steering < -max_steering_angle:
            steering = -max_steering_angle
        if distance < 0.0:
            distance = 0.0

        # apply noise
        steering2 = random.gauss(steering, self.steering_noise)
        distance2 = random.gauss(distance, self.distance_noise)

        # apply steering drift
        steering2 += self.steering_drift

        # Execute motion
        turn = np.tan(steering2) * distance2 / self.length

        if abs(turn) < tolerance:
            # approximate by straight line motion
            self.x += distance2 * np.cos(self.orientation)
            self.y += distance2 * np.sin(self.orientation)
            self.orientation = (self.orientation + turn) % (2.0 * np.pi)
        else:
            # approximate bicycle model for motion
            radius = distance2 / turn
            cx = self.x - (np.sin(self.orientation) * radius)
            cy = self.y + (np.cos(self.orientation) * radius)
            self.orientation = (self.orientation + turn) % (2.0 * np.pi)
            self.x = cx + (np.sin(self.orientation) * radius)
            self.y = cy - (np.cos(self.orientation) * radius)

    def __repr__(self):
        return '[x=%.5f y=%.5f orient=%.5f]' % (self.x, self.y, self.orientation)

2.Proportional Control
Proportional Control考虑当前偏差,偏差越大就让车辆越快的向中心线靠拢。
α=γ·CTE
上式中,α是车辆的Steering Angle,γ是增益系数,CTE是Cross Track Error。

def run(param):
    myrobot = robot()
    myrobot.set(0.0, 1.0, 0.0)
    speed = 1.0 # motion distance is equalt to speed (we assume time = 1)
    N = 100 

    for i in range(N):
        crosstrack_error = myrobot.y
        steer = -param * crosstrack_error
        myrobot.move(steer, speed)

run(0.1)

仅对车辆施加Proportional Control的车辆运动效果如下(绿色的是车辆运动轨迹,红色是目标轨迹):
PID控制算法

做一个动图,看起来更加直观。可以看到,车辆发生了overshoot的问题,沿着目标轨迹上下震荡,始终不能做到稳定的沿着目标轨迹运动。
PID控制算法

我们调大增益系数,从γ=0.1到γ=0.3,观察到车辆震荡的频率更高了。
PID控制算法

3.P&D Control
为了解决OverShoot引起的震荡问题,引入Derivative Control。Derivative Control考虑CTE的变化,并根据变化反方向校正Steering Angle,使得车辆可以平滑的靠近目标轨迹。
PID控制算法

代码实现:

robot = Robot()
robot.set(0, 1, 0)

def run(robot, tau_p, tau_d, n=150, speed=1.0):
    x_trajectory = []
    y_trajectory = []

    crosstrack_error = robot.y

    for i in range(n):
        diff_crosstrack_error = robot.y - crosstrack_error
        steer = -tau_p * crosstrack_error - tau_d * diff_crosstrack_error
        crosstrack_error = robot.y
        robot.move(steer, speed)
        
        x_trajectory.append(robot.x)
        y_trajectory.append(robot.y)

    return x_trajectory, y_trajectory
    
x_trajectory, y_trajectory = run(robot, 0.3, 3.0)
n = len(x_trajectory)

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8))
ax1.plot(x_trajectory, np.zeros(n), 'r', label='reference')
ax1.plot(x_trajectory, y_trajectory, 'g', label='PD controller')

plt.show()

当τp-0.1,τd=0.3时的效果:
PID控制算法

当τp-0.2,τd=0.3时的效果:
PID控制算法

当τp-0.3,τd=0.3时的效果:
PID控制算法

看起来已经很完美了,但是实际还存在一个系统偏差(Systematic Bias)的问题。如下图所示,控制指令要求车辆转向为0度,但实际上它转了0.5度,这种误差对于人类司机来讲,会自动校正;但是对于自动驾驶系统,需要消除这种误差。
PID控制算法

给Robot增加一个drift:

robot.set_steering_drift(10.0 * math.pi / 180.0)

可以看到由于系统误差的存在,导致最终车辆稳定在一个非目标位置。
PID控制算法

4.PID Control
如何解决系统偏差导致的目标偏差的问题?直观的感觉是,需要向右打方向盘,校正车辆的行驶方向,使得车辆不断靠近目标轨迹。这就是Integral Control的效果。
PID控制算法
PID控制算法

代码实现:

robot = Robot()
robot.set(0, 1, 0)
robot.set_steering_drift(10.0 * math.pi / 180.0)

def run(robot, tau_p, tau_d, tau_i, n=200, speed=1.0):
    x_trajectory = []
    y_trajectory = []

    int_crosstrack_error = 0

    crosstrack_error = robot.y

    for i in range(n):
        diff_crosstrack_error = robot.y - crosstrack_error

        crosstrack_error = robot.y
        int_crosstrack_error += crosstrack_error

        steer = -tau_p * crosstrack_error - tau_d * diff_crosstrack_error -tau_i * int_crosstrack_error

        robot.move(steer, speed)

        x_trajectory.append(robot.x)
        y_trajectory.append(robot.y)

    return x_trajectory, y_trajectory


x_trajectory, y_trajectory = run(robot, 0.2, 3.0, 0.004)
n = len(x_trajectory)

plt.plot(x_trajectory, y_trajectory, 'g', label='PID controller')
plt.plot(x_trajectory, np.zeros(n), 'r', label='reference')
plt.legend()
plt.show()

实际效果如下:
PID控制算法

本文代码均来自:Udacity的Artificial Intelligence for Robotics。
参考材料
1.https://zh.wikipedia.org/wiki/PID%E6%8E%A7%E5%88%B6%E5%99%A8
2.Udacity的Artificial Intelligence for Robotics

相关标签: 控制