欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Python 3学习笔记(14):PyOpenGL之绘制螺帽

程序员文章站 2022-03-25 17:24:15
...
  • 目的

1、建立光照模型

2、绘制螺帽,可用箭头键切换视角。

Python 3学习笔记(14):PyOpenGL之绘制螺帽

  • 内容 

选定投影方式后,下一步就是选择螺钉视图的光照模型。渲染环境包括光照和材料属性(金属光泽),唯一的光源在观察者的左上方。

螺钉的螺帽部分有六个光滑的侧面,其顶部和底部也是光滑的。我们可以用两个六边形(代表顶部和底部)和围绕其边缘的一系列矩形(代表各个侧面)来构造这个实心对象。

我们使用GL_TRIANGLE_FAN来绘制它。我们使用六个三角形组成的三角形扇面来表示螺帽的顶部和底部。画螺帽共需要18个图元,顶部和底部各由6个三角形组成,6个矩形则组成螺帽的侧面。

坐标系的原点定义在螺帽的中心。 

  • 代码 

 

#coding:utf-8

import sys
from math import pi as PI
from math import sin, cos
from math import sqrt

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *

#将指定为三个坐标组的法线向量换算。
def ReduceToUnit(vector): 
	# Calculate the length of the vector		
	length = sqrt((vector[0]*vector[0]) + (vector[1]*vector[1]) +(vector[2]*vector[2]));
	#Keep the program from blowing up by providing an exceptable
	#value for vectors that may calculated too close to zero.
	if (length == 0.0):
		length = 1.0 
	#Dividing each element by the length will result in a	unit normal vector.
	vector[0] /= length 
	vector[1] /= length 
	vector[2] /= length 
 
# Points p1, p2, & p3 specified in counter clock-wise order
# float v[3][3], float out[3]
def calcNormal(v,out): 
	#float v1[3],v2[3];
	v1=[0.0 for i in range(3)]
	v2=[0.0 for i in range(3)]
	out=[0.0 for i in range(3)]	
	xx = 0 
	yy = 1 
	zz = 2 

	# Calculate two vectors from the three points
	v1[xx] = v[0][xx] - v[1][xx] 
	v1[yy] = v[0][yy] - v[1][yy] 
	v1[zz] = v[0][zz] - v[1][zz] 

	v2[xx] = v[1][xx] - v[2][xx] 
	v2[yy] = v[1][yy] - v[2][yy] 
	v2[zz] = v[1][zz] - v[2][zz] 

	# Take the cross product of the two vectors to get
	# the normal vector which will be stored in out
	out[xx] = v1[yy]*v2[zz] - v1[zz]*v2[yy] 
	out[yy] = v1[zz]*v2[xx] - v1[xx]*v2[zz] 
	out[zz] = v1[xx]*v2[yy] - v1[yy]*v2[xx] 

	# Normalize the vector (shorten length to one)
	ReduceToUnit(out) 

def RenderHead():
	global x,y,angle	# Calculated positions
	height = 25.0		# Thickness of the head
	diameter = 30.0		# Diameter of the head
	#float normal[3],corners[4][3];    // Storeage of vertices and normals
	corners = [[0.0 for i in range(3)] for i in range(4)]
	normal=[0.0 for i in range(3)]
	step = (PI/3.0)     # step = 1/6th of a circle = hexagon
    
	# Set material color for head of bolt
	glColor3f(0.0, 0.0, 0.7) 

    # ----------开始一个三角形扇面覆盖 螺帽顶面------
	glFrontFace(GL_CCW)
	glBegin(GL_TRIANGLE_FAN)
	#All the normals for the top of the bolt point straight up the z axis.
	glNormal3f(0.0, 0.0, 1.0)
	# Center of fan is at the origin
	glVertex3f(0.0, 0.0, height/2.0)

	#把圆圈分成6个部分,然后开始下降点来绘制扇面.  避免使用glFrontFace()进行状态改变
	# 第一个和最后一个顶点封闭扇面
	glVertex3f(0.0, diameter, height/2.0)

	angle=(2.0*PI)-step
	while angle>0 :
		#Calculate x and y position of the next vertex
		x = diameter* sin(angle)
		y = diameter* cos(angle)       
		# Specify the next vertex for the triangle fan
		glVertex3f(x, y, height/2.0)
		angle-=step

	# Last vertex closes the fan
	glVertex3f(0.0, diameter, height/2.0)
	glEnd()

    # ---------开始一个三角形扇面覆盖 螺帽底面--------
	glBegin(GL_TRIANGLE_FAN)

	glNormal3f(0.0, 0.0, -1.0)       
	# Center of fan is at the origin
	glVertex3f(0.0, 0.0, -height/2.0)

	angle=0
	while angle<(2.0*PI)-step :
		#Calculate x and y position of the next vertex
		x = diameter* sin(angle)
		y = diameter* cos(angle)       
		# Specify the next vertex for the triangle fan
		glVertex3f(x, y, -height/2.0)
		angle+=step

	# Last vertex closes the fan
	glVertex3f(0.0, diameter, -height/2.0)
	glEnd()

    # ---------开始一个四角形覆盖 螺帽侧面
	glBegin(GL_QUADS);
	angle=0
	while angle<(2.0*PI)-step :
		x = diameter* sin(angle)
		y = diameter* cos(angle)              
		#start at bottom of head
		corners[0][0] = x
		corners[0][1] = y
		corners[0][2] = -height/2.0

		#extrude to top of head
		corners[1][0] = x
		corners[1][1] = y
		corners[1][2] = height/2.0

		#Calculate the next hex point
		x = diameter* sin(angle+step) 
		y = diameter* cos(angle+step) 

		#Make sure we aren't done before proceeding
		if (angle+step < 3.1415*2.0):
			#If we are done, just close the fan at a  known coordinate.
			corners[2][0] = x
			corners[2][1] = y
			corners[2][2] = height/2.0

			corners[3][0] = x
			corners[3][1] = y 
			corners[3][2] = -height/2.0 
		else:
			corners[2][0] = 0.0 
			corners[2][1] = diameter 
			corners[2][2] = height/2.0 

			corners[3][0] = 0.0 
			corners[3][1] = diameter 
			corners[3][2] = -height/2.0 

		calcNormal(corners, normal) 
		glNormal3fv(normal) 
        
		glVertex3fv(corners[0])
		glVertex3fv(corners[1])
		glVertex3fv(corners[2])
		glVertex3fv(corners[3])
		angle+=step
				
	glEnd() 



def RenderScene():
	global xRot,yRot
	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)					

	# Save the matrix state
	glMatrixMode(GL_MODELVIEW) 
	glPushMatrix() 
    # 绕X轴和Y轴旋转(角度,x,y,z)
	glRotatef(xRot, 1.0, 0.0, 0.0)
	glRotatef(yRot, 0.0, 0.0, 1.0)	
	# Render just the hexagonial head of the nut
	RenderHead()
	glPopMatrix()
    #双缓冲的刷新模式; Swap buffers
	glutSwapBuffers()					

#设置渲染状态
def SetupRC():	
	# Light values and coordinates光照 值与坐标;环境光,漫射光,镜面光,光的坐标,
	ambientLight = [0.4, 0.4, 0.4, 1.0 ]
	diffuseLight = [0.7, 0.7, 0.7, 1.0 ]
	specular = [ 0.9, 0.9, 0.9, 1.0]
	lightPos = [ -50.0, 200.0, 200.0, 1.0]
	specref =  [ 0.6, 0.6, 0.6, 1.0]


	glEnable(GL_DEPTH_TEST)	# Hidden surface removal
	glEnable(GL_CULL_FACE)	# Do not calculate inside of solid object
	glFrontFace(GL_CCW) 
	
	glEnable(GL_LIGHTING) 

	# Setup light 0
	glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight) 
	glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight) 
	glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight) 
	glLightfv(GL_LIGHT0,GL_SPECULAR,specular) 

	# Position and turn on the light
	glLightfv(GL_LIGHT0,GL_POSITION,lightPos) 
	glEnable(GL_LIGHT0) 

	# Enable color tracking
	glEnable(GL_COLOR_MATERIAL) 
	
	# Set Material properties to follow glColor values
	glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE) 

	# All materials hereafter have full specular reflectivity with a moderate shine
	glMaterialfv(GL_FRONT, GL_SPECULAR,specref) 
	glMateriali(GL_FRONT,GL_SHININESS,64) 
	
	glClearColor(0.0, 0.0, 0.0, 1.0)  #背景黑色
	

#改变窗口大小时调用
def ChangeSize(w,h):
	nRange = 100.0
	if(h == 0):     #防止除数为0
		h = 1
	glViewport(0, 0, w, h)						#设置视区大小
	glMatrixMode(GL_PROJECTION)					#投影矩阵模式
	glLoadIdentity()							#矩阵堆栈清空
	#设置裁剪窗口大小
	if (w <= h): 
		glOrtho (-nRange, nRange, -nRange*h/w, nRange*h/w, -nRange*2.0, nRange*2.0)	
	else: 
		glOrtho (-nRange*w/h, nRange*w/h, -nRange, nRange, -nRange*2.0, nRange*2.0)	
						
	glMatrixMode(GL_MODELVIEW)					#模型矩阵模式
	glLoadIdentity()

def SpecialKeys(key,x,y):
	global xRot,yRot
	if(key == GLUT_KEY_UP):
		xRot-= 5.0
	if(key == GLUT_KEY_DOWN):
		xRot += 5.0
	if(key == GLUT_KEY_LEFT):
		yRot -= 5.0
	if(key == GLUT_KEY_RIGHT):
		yRot += 5.0
	if(key > 356.0):
		xRot = 0.0
	if(key < -1.0):
		xRot = 355.0
	if(key > 356.0):
		yRot = 0.0
	if(key < -1.0):
		yRot = 355.0
	glutPostRedisplay()

xRot=0.0
yRot=0.0
print("三维螺帽,按箭头键改变视角!")
#使用glut初始化OpenGL
glutInit()
glutInitWindowSize(700,700)
#设置显示模式;(注意双缓冲)
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB| GLUT_DEPTH)
glutCreateWindow("Bolt Head")

glutReshapeFunc(ChangeSize)
glutSpecialFunc(SpecialKeys)     #注册键盘回调函数
#调用函数绘制图像
glutDisplayFunc(RenderScene)
SetupRC()
#主循环
glutMainLoop()

 

相关标签: OpenGL