欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

理解RDD的reduceByKey与groupByKey

程序员文章站 2022-03-24 17:38:38
...

数据准备

val words = Array("a","a","b","c","c")
val conf = new SparkConf().setAppName("word-count").setMaster("local");
val sc = new SparkContext(conf)
val rdd = sc.parallelize(words)

reduceByKey方法

rdd.map((_,1)).reduceByKey(_+_).collect().foreach(println)

groupByKey方法

rdd.map((_,1)).groupByKey().map(word => (word._1, word._2.sum)).collect().foreach(println)

输出结果是一致的,我们查看API文档发现有如下描述,

reduceByKey
Merge the values for each key using an associative and commutative reduce function. This will also perform the merging locally on each mapper before sending results to a reducer, similarly to a "combiner" in MapReduce. Output will be hash-partitioned with the existing partitioner/ parallelism level.

groupByKey()
Group the values for each key in the RDD into a single sequence. Hash-partitions the resulting RDD with the existing partitioner/parallelism level. The ordering of elements within each group is not guaranteed, and may even differ each time the resulting RDD is evaluated.

根据对比,我们发现reduceByKey方法在向reducer发送数据之前会先将数据按key进行合并,而groupByKey方法是直接对计算的RDD结果进行分区。

假设我们的数据文件分布在两个节点上,那么

reduceByKey工作图解

理解RDD的reduceByKey与groupByKey

groupByKey工作图解

理解RDD的reduceByKey与groupByKey

 

相关标签: Spark