STL空间配置器
STL空间配置器:
1.空间配置器三个文件
stl_construct.h 这里定义了全局函数construct()和destroy(),负责对象的构造和析构。
stl_alloc.h文件中定义了一、二两级配置器,彼此合作,配置器名为alloc.
stl_uninitialized.h 这里定义了一些全局函数,用来填充(fill)或复制(copy)大块内存数据,他们也都隶属于STL标准规划。
2.alloc两级配置器
在stl_alloc.h中定义了两级配置器,主要思想是申请大块内存池,小块内存直接从内存池中申请,当不够用时再申请新的内存池,还有就是大块内存直接申请。
2.1申请空间大于128字节——->一级配置器
当申请空间大于128字节时调用第一级配置器,第一级配置器没有用operator::new和operator::delete来申请空间,而是直接调用malloc/free和realloc,并且实现了类似c++中new-handler的机制。所谓c++ new handler机制是,你可以要求系统在内存配置需求无法被满足时,调用一个指定的函数。换句话说,一旦::operator::new无法完成任务,在丢出std::bad_alloc异常状态之前,会先调用由客端指定的处理例程,该处理例程通常称为new-handler.new-handler解决内存做法有特定的模式。
SGI第一级配置器的allocate()和realloc都是在调用malloc和realloc不成功后,改调用oom_malloc()和oom_realloc(),后两者都有内循环,不断调用”内存不足处理例程”,期望在某次调用之后,获得足够的内存而圆满完成任务。但如果“内存不足处理例程“并未被客端设定,oom_malloc()和oom_realloc便调用_THROW_BAD_ALLOC, 丢出bad_alloc异常信息,或利用exit(1)硬生生中止程序。
2.2申请空间小于128字节——->二级配置器
在stl_alloc.h中定义的第二级配置器中,如果区块够大,超过128字节时,就移交给第一级配置器处理。
当区块小于128字节时,则以内存池管理,此法又称为次层配置,每次配置一大块内存,并维护对应的*链表(free-list)。下次若再有相同大小的内存需求,就直接从free-list中拔出。如果客端释还小额区块,就由配置器回收到free-lists中,另外,配置器除了负责配置,也负责回收。
为了管理方便,SGI第二级配置器会主动将任何小额区块的内存需求量上调至8的倍数。并维护16个free-lists,各自管理大小分别为8,16,24,32,40,48,56,64,72,80,88,96,104, 112,120,128 字节的小额区块。
当申请小于等于128字节时就会检查对应的free list,如果free-list中有可用的区块,就直接拿来,如果没有,就准备为对应的free-list 重新填充空间。新的空间将取自内存池,缺省取得20个新节点,如果内存池不足(还足以一个以上的节点),就返回的相应的节点数.如果当内存池中连一个节点大小都不够时,就申请新的内存池,大小为2*total_bytes+ROUND_UP(heap_size>>4),totoal_bytes 为申请的空间大小,ROUND_UP调整为8的倍数,heap_size为当前总申请内存池的大小。如果申请该内存池成功就把原来内存池中剩下的空间分配给适当的free-list.万一山穷水尽,整个system heap空间都不够了(以至无法为内存池注入源头活水),malloc()行动失败,就会四处寻找有无”尚有未用区块,且区块足够大 “之free lists.找到了就挖一块交出,找不到就调用第一级配置器。第一级配置器其实也是使用malloc来配置内存。但它有out-of-memory处理机制(类似new-handler机制),或许有机会释放其他的内存拿来此处使用。如果可以就成功,否则发出bad_alloc异常。
3、STL的默认内存分配器
隐藏在这些容器后的内存管理工作是通过STL提供的一个默认的allocator实现的。当然,用户也可以定制自己的allocator,只要实现allocator模板所定义的接口方法即可,然后通过将自定义的allocator作为模板参数传递给STL容器,创建一个使用自定义allocator的STL容器对象,如:
stl::vector<int, UserDefinedAllocator> array;
大多数情况下,STL默认的allocator就已经足够了。这个allocator是一个由两级分配器构成的内存管理器,当申请的内存大小大于128byte时,就启动第一级分配器通过malloc直接向系统的堆空间分配,如果申请的内存大小小于128byte时,就启动第二级分配器,从一个预先分配好的内存池中取一块内存交付给用户,这个内存池由16个不同大小(8的倍数,8~128byte)的空闲列表组成,allocator会根据申请内存的大小(将这个大小round up成8的倍数)从对应的空闲块列表取表头块给用户。
这种做法有两个优点
(1)小对象的快速分配。
小对象是从内存池分配的,这个内存池是系统调用一次malloc分配一块足够大的区域给程序备用,当内存池耗尽时再向系统申请一块新的区域,整个过程类似于批发和零售,起先是由allocator向总经商批发一定量的货物,然后零售给用户,与每次都总经商要一个货物再零售给用户的过程相比,显然是快捷了。当然,这里的一个问题时,内存池会带来一些内存的浪费,比如当只需分配一个小对象时,为了这个小对象可能要申请一大块的内存池,但这个浪费还是值得的,况且这种情况在实际应用中也并不多见。
(2)避免了内存碎片的生成。
程序中的小对象的分配极易造成内存碎片,给操作系统的内存管理带来了很大压力,系统中碎片的增多不但会影响内存分配的速度,而且会极大地降低内存的利用率。以内存池组织小对象的内存,从系统的角度看,只是一大块内存池,看不到小对象内存的分配和释放。
实现时,allocator需要维护一个存储16个空闲块列表表头的数组free_list,数组元素i是一个指向块大小为8*(i+1)字节的空闲块列表的表头,一个指向内存池起始地址的指针start_free和一个指向结束地址的指针end_free。空闲块列表节点的结构如下:
下一篇: STL