欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

3d图

程序员文章站 2022-03-21 17:41:02
...

3d图1

# coding=utf-8
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d
a,b = np.mgrid[-2:2:20j,-2:2:20j]
#测试数据
c=a*np.exp(-a**2-b**2)
#三维图形
ax = plt.subplot(111, projection='3d')
ax.set_title('www.linuxidc.com - matplotlib Code Demo');
ax.plot_surface(a,b,c,rstride=2, cstride=1, cmap=plt.cm.Spectral)
#设置坐标轴标签
ax.set_xlabel('A')
ax.set_ylabel('B')
ax.set_zlabel('C')
plt.show()

3d图2

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np

n_radii = 8
n_angles = 36

# Make radii and angles spaces (radius r=0 omitted to eliminate duplication).
radii = np.linspace(0.125, 1.0, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)

# Repeat all angles for each radius.
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)

# Convert polar (radii, angles) coords to cartesian (x, y) coords.
# (0, 0) is manually added at this stage, so there will be no duplicate
# points in the (x, y) plane.
x = np.append(0, (radii * np.cos(angles)).flatten())
y = np.append(0, (radii * np.sin(angles)).flatten())

# Compute z to make the pringle surface.
z = np.sin(-x * y)

fig = plt.figure()
ax = fig.gca(projection='3d')

ax.plot_trisurf(x, y, z, linewidth=0.2, antialiased=True)

plt.show()

3d图3

from matplotlib import pyplot as plt

import numpy as np

from mpl_toolkits.mplot3d import Axes3D

figure = plt.figure()

ax = Axes3D(figure)

X = np.arange(-10, 10, 0.25)

Y = np.arange(-10, 10, 0.25)

#网格化数据

X, Y = np.meshgrid(X, Y)

R = np.sqrt(X**2 + Y**2)

Z = np.cos(R)

ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')

plt.show()

3d图4

#coding=utf-8
#3D心形
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
import matplotlib

#设置字体
myfont = matplotlib.font_manager.FontProperties(fname="ziti.TTF")#SIMLI.TTF与.py在同一目录下 字体文件库Windows一堆
matplotlib.rcParams['axes.unicode_minus'] = False

def heart_3d(x,y,z):
 return (x**2+(9/4)*y**2+z**2-1)**3-x**2*z**3-(9/80)*y**2*z**3


def plot_implicit(fn, bbox=(-1.5, 1.5)):
 xmin, xmax, ymin, ymax, zmin, zmax = bbox*3
 fig = plt.figure()
 ax = fig.add_subplot(111, projection='3d')
 A = np.linspace(xmin, xmax, 100) # resolution of the contour
 B = np.linspace(xmin, xmax, 40) # number of slices
 A1, A2 = np.meshgrid(A, A) # grid on which the contour is plotted

 for z in B: # plot contours in the XY plane
  X, Y = A1, A2
  Z = fn(X, Y, z)
  cset = ax.contour(X, Y, Z+z, [z], zdir='z', colors=('r',))
  # [z] defines the only level to plot
  # for this contour for this value of z

 for y in B: # plot contours in the XZ plane
  X, Z = A1, A2
  Y = fn(X, y, Z)
  cset = ax.contour(X, Y+y, Z, [y], zdir='y', colors=('red',))

 for x in B: # plot contours in the YZ plane
  Y, Z = A1, A2
  X = fn(x, Y, Z)
  cset = ax.contour(X+x, Y, Z, [x], zdir='x',colors=('red',))

 # must set plot limits because the contour will likely extend
 # way beyond the displayed level. Otherwise matplotlib extends the plot limits
 # to encompass all values in the contour.
 ax.set_zlim3d(zmin, zmax)
 ax.set_xlim3d(xmin, xmax)
 ax.set_ylim3d(ymin, ymax)
 #标题
 plt.title(u"这是一个标题",fontproperties=myfont)
 #取消坐标轴显示
 plt.axis('off')
 plt.show()

if __name__ == '__main__':
 plot_implicit(heart_3d)