欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

金融行业也能用到Python?这就是Python之所以能这么火的原因吧!

程序员文章站 2022-03-02 16:11:25
此处介绍文件夹,下面,我们对这6大模块进行详细的介绍。 一、URL下载器 URL下载器包含两步,首先下载网站左侧导航栏的URL,然后通过导航栏的URL获取每个子栏目包含的链接列表。 下面是获取左侧导航栏所有链接并生成导航文件的代码 下面是获取每个子栏目所有链接的代码 三、HTML下载器 HTML下载 ......
金融行业也能用到Python?这就是Python之所以能这么火的原因吧!

 

金融行业也能用到Python?这就是Python之所以能这么火的原因吧!

 

此处介绍文件夹,下面,我们对这6大模块进行详细的介绍。

一、URL下载器

URL下载器包含两步,首先下载网站左侧导航栏的URL,然后通过导航栏的URL获取每个子栏目包含的链接列表。

金融行业也能用到Python?这就是Python之所以能这么火的原因吧!

 

下面是获取左侧导航栏所有链接并生成导航文件的代码

# -*- coding: utf-8 -*-
import pandas as pd
import urllib.request
from bs4 import BeautifulSoup
import re
import os
class get_catalog(object):
 '''生成和操作导航文件'''
 def save_catalog(self):
 '''获得证券之星左侧自导航的内容和网址并保存'''
 #获取网页内容
 url = 'http://quote.stockstar.com'
 request =urllib.request.Request(url = url)
 response = urllib.request.urlopen(request)
 content = response.read().decode('gbk')
 #截取左侧导航内容
 soup = BeautifulSoup(content,"lxml")
 soup = BeautifulSoup(str(soup.find_all('div',class_ = "subMenuBox")),"lxml")
 #初始化一级子目录和二级子目录的数据框
 catalog1 = pd.DataFrame(columns = ["cata1","cata2","url2"])
 catalog2 = pd.DataFrame(columns = ["url2","cata3","url3"])
 #整理目录内容和其对应的链接
 index1 = 0;index2 = 0
 for content1 in soup.find_all('div',class_ = re.compile("list submenu?")):
 cata1 = re.findall('>(.*?)<',str(content1.h3.a))
 for content2 in content1.find_all('dl'):
 cata2 = re.findall('>(.*?)<',str(content2.dt.a).replace('\r\n',''))
 url2 = url + content2.dt.a['href']
 catalog1.loc[index1] = {'cata1':cata1[0],'cata2':cata2[0].split()[0],'url2':url2}
 index1 += 1
 for content3 in content2.find_all('li'):
 cata3 = re.findall('·(.*?)<',str(content3.a))
 url3 = url + content3.a['href']
 catalog2.loc[index2] = {'url2':url2,'cata3':cata3[0],'url3':url3}
 index2 += 1
 #对一级子目录表和二级子目录表做表连接并保存
 catalog = pd.merge(catalog1,catalog2,on='url2',how='left')
 catalog.to_csv('catalog.csv')
 
 def load_catalog(self):
 '''判断导航文件是否存在并载入'''
 if 'catalog.csv' not in os.listdir():
 self.save_catalog()
 print('网址导航文件已生成')
 else:
 print('网址导航文件已存在')
 catalog = pd.read_csv('catalog.csv',encoding='gbk',usecols=range(1,6))
 print("网址导航文件已载入")
 return(catalog)

 def index_info(self,catalog,index):
 '''创建每行的行名,作为存入数据库的表名,并获取每行终端的网址链接'''
 if str(catalog.loc[index]['cata3'])=='nan':
 table_name = catalog.loc[index]['cata1'] + '_' + catalog.loc[index]['cata2']
 url = catalog.loc[index]['url2']
 else:
 #+、()等符号不能作为数据库表名,得替换或剔除
 if '+' in catalog.loc[index]['cata3']:
 cata3 = catalog.loc[index]['cata3'].replace('+','')
 table_name = catalog.loc[index]['cata1'] + '_' + catalog.loc[index]['cata2'] + '_' + cata3
 elif '(' in catalog.loc[index]['cata3']:
 cata3 = catalog.loc[index]['cata3'].replace('(','').replace(')','')
 table_name = catalog.loc[index]['cata1'] + '_' + catalog.loc[index]['cata2'] + '_' + cata3
 else:
 table_name = catalog.loc[index]['cata1'] + '_' + catalog.loc[index]['cata2'] + '_' + catalog.loc[index]['cata3']
 url = catalog.loc[index]['url3']
 return(table_name,url)

get_catalog

下面是获取每个子栏目所有链接的代码

import pandas as pd
from selenium import webdriver
import time
import re
import math
from get_catalog import get_catalog
class get_urls(object):
 '''获取每个栏目的链接列表'''
 def __init__(self,browser,url):
 self.browser = browser #浏览器对象
 self.url = url #待爬取的URL
 
 def get_browser(self):
 '''连接URL'''
 state = 0
 test = 0
 while state == 0 and test < 5:
 try:
 self.browser.get(self.url)
 state = 1
 print('成功连接 %s'%self.url)
 except:
 test += 1

 def get_element(self):
 '''获取翻页相关按钮的链接列表'''
 self.get_browser()
 element_list=[]
 for i in range(1,8):
 try: 
 element = self.browser.find_element_by_xpath('//*[@id="divPageControl1"]/a[%d]'%i).get_attribute('href')
 element_list.append(element)
 except:
 time.sleep(0.2)
 return(element_list)

 def get_urllist(self):
 '''通过翻页相关按钮生成有效的页码链接列表'''
 element_list = self.get_element()
 if len(element_list)<=1:
 urls = [self.url]
 else:
 try:
 max_number = re.search('_(\d*)\.',element_list[len(element_list)-3])
 begin = max_number.start() + 1
 end = max_number.end() - 1
 int_max_number = int(element_list[len(element_list)-3][begin:end])
 urls = []
 for i in range(1,int_max_number + 1):
 url = element_list[len(element_list)-3][:begin] + str(i) + element_list[len(element_list)-3][end:]
 urls.append(url)
 except:
 urls = [self.url]
 return(urls)

get_urls
金融行业也能用到Python?这就是Python之所以能这么火的原因吧!

 

# coding:utf - 8
class UrlManager(object):
 '''URL管理器'''
 def __init__(self):
 self.new_urls = set() #未爬取URL集合
 self.old_urls = set() #已爬取URL
 def has_new_url(self):
 '''判断是否有未爬取的URL'''
 return(self.new_url_size()!=0)
 def get_new_url(self):
 '''获取一个未爬取的URL'''
 new_url = self.new_urls.pop()
 self.old_urls.add(new_url)
 return(new_url)
 def add_new_url(self,url):
 '''将新的URL添加到未爬取的URL集合中'''
 if url is None:
 return
 if url not in self.new_urls and url not in self.old_urls:
 self.new_urls.add(url)
 def add_new_urls(self,urls):
 '''将新的URL列表添加到未爬取的URL集合中'''
 if urls is None or len(urls)==0:
 return
 for url in urls:
 self.add_new_url(url)
 def new_url_size(self):
 '''获取为爬取URL集合的大小'''
 return(len(self.new_urls))

UrlManager

三、HTML下载器

HTML下载器用来下载网页,这时候需要注意网页的编码,已保证下载的网页没有乱码。

获取网页内容时可能会遇到IP被封的情况,所以我们得爬取一个代理IP池,供HTML下载器使用。

下面是获取代理IP池的代码

import urllib.request
import re
import time
import random
import socket
import threading

class proxy_ip(object):
 '''获取有效代理IP并保存'''
 def __init__(self,url,total_page):
 self.url = url #打算爬取的网址
 self.total_page = total_page #遍历代理IP网页的页数
 
 def get_proxys(self):
 '''抓取代理IP'''
 user_agent = ["Mozilla/5.0 (Windows NT 10.0; WOW64)", 'Mozilla/5.0 (Windows NT 6.3; WOW64)',
 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11',
 'Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko',
 'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.95 Safari/537.36',
 'Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; rv:11.0) like Gecko)',
 'Mozilla/5.0 (Windows; U; Windows NT 5.2) Gecko/2008070208 Firefox/3.0.1',
 'Mozilla/5.0 (Windows; U; Windows NT 5.1) Gecko/20070309 Firefox/2.0.0.3',
 'Mozilla/5.0 (Windows; U; Windows NT 5.1) Gecko/20070803 Firefox/1.5.0.12',
 'Opera/9.27 (Windows NT 5.2; U; zh-cn)',
 'Mozilla/5.0 (Macintosh; PPC Mac OS X; U; en) Opera 8.0',
 'Opera/8.0 (Macintosh; PPC Mac OS X; U; en)',
 'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.12) Gecko/20080219 Firefox/2.0.0.12 Navigator/9.0.0.6',
 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Win64; x64; Trident/4.0)',
 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0)',
 'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.2; .NET4.0C; .NET4.0E)',
 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Maxthon/4.0.6.2000 Chrome/26.0.1410.43 Safari/537.1 ',
 'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.2; .NET4.0C; .NET4.0E; QQBrowser/7.3.9825.400)',
 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:21.0) Gecko/20100101 Firefox/21.0 ',
 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.92 Safari/537.1 LBBROWSER',
 'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0; BIDUBrowser 2.x)',
 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.11 TaoBrowser/3.0 Safari/536.11']
 ip_totle=[]
 for page in range(1,self.total_page+1):
 #url = 'http://www.httpsdaili.com/?page='+str(page)
 #url='http://www.kuaidaili.com/free/inha/'+str(page)+'/'
 url='http://www.xicidaili.com/nn/'+str(page) #西刺代理
 headers={"User-Agent":random.choice(user_agent)}
 try:
 request=urllib.request.Request(url=url,headers=headers)
 response=urllib.request.urlopen(request)
 content=response.read().decode('utf-8')
 print('get page',page)
 pattern=re.compile('<td>(\d.*?)</td>') #截取<td>与</td>之间第一个数为数字的内容
 ip_page=re.findall(pattern,str(content))
 ip_totle.extend(ip_page)
 except Exception as e:
 print(e)
 time.sleep(random.choice(range(1,5)))
 #打印抓取内容
 print('代理IP地址 ','\t','端口','\t','速度','\t','验证时间')
 for i in range(0,len(ip_totle),4):
 print(ip_totle[i],' ','\t',ip_totle[i+1],'\t',ip_totle[i+2],'\t',ip_totle[i+3])
 #整理代理IP格式
 proxys = []
 for i in range(0,len(ip_totle),4):
 proxy_host = ip_totle[i]+':'+ip_totle[i+1]
 proxy_temp = {"http":proxy_host}
 proxys.append(proxy_temp)
 return(proxys)

 def test(self,lock,proxys,i,f):
 '''验证代理IP有效性'''
 socket.setdefaulttimeout(15) #设置全局超时时间
 url = self.url 
 try:
 proxy_support = urllib.request.ProxyHandler(proxys[i])
 opener = urllib.request.build_opener(proxy_support)
 opener.addheaders=[("User-Agent","Mozilla/5.0 (Windows NT 10.0; WOW64)")]
 urllib.request.install_opener(opener)
 #res = urllib.request.urlopen(url).read().decode('gbk')
 res = urllib.request.urlopen(url).read().decode('utf-8')
 print(res)
 lock.acquire() #获得锁
 print(proxys[i],'is OK')
 f.write('%s\n' %str(proxys[i])) #写入该代理IP
 lock.release() #释放锁
 except Exception as e:
 lock.acquire()
 print(proxys[i],e)
 lock.release()
 
 def get_ip(self):
 '''多线程验证'''
 f = open('proxy_ip.txt','a+') #新建一个储存有效IP的文档
 lock=threading.Lock() #建立一个锁
 #多线程验证
 proxys = self.get_proxys()
 threads=[]
 for i in range(len(proxys)):
 thread=threading.Thread(target=self.test,args=[lock,proxys,i,f])
 threads.append(thread)
 thread.start()
 #阻塞主进程,等待所有子线程结束
 for thread in threads:
 thread.join() 
 f.close() #关闭文件

get_proxy_ip

下面是HTML下载器模块的代码

# _*_ coding:utf-8 _*_
from firstSpider.get_proxy_ip import proxy_ip
import urllib.request
import random
import os
import socket
import time
import re
class HtmlDownloader(object):
 '''获取网页内容'''
 def download(self,url):
 user_agent = ["Mozilla/5.0 (Windows NT 10.0; WOW64)", 'Mozilla/5.0 (Windows NT 6.3; WOW64)',
 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11',
 'Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko',
 'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.95 Safari/537.36',
 'Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; rv:11.0) like Gecko)',
 'Mozilla/5.0 (Windows; U; Windows NT 5.2) Gecko/2008070208 Firefox/3.0.1',
 'Mozilla/5.0 (Windows; U; Windows NT 5.1) Gecko/20070309 Firefox/2.0.0.3',
 'Mozilla/5.0 (Windows; U; Windows NT 5.1) Gecko/20070803 Firefox/1.5.0.12',
 'Opera/9.27 (Windows NT 5.2; U; zh-cn)',
 'Mozilla/5.0 (Macintosh; PPC Mac OS X; U; en) Opera 8.0',
 'Opera/8.0 (Macintosh; PPC Mac OS X; U; en)',
 'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.12) Gecko/20080219 Firefox/2.0.0.12 Navigator/9.0.0.6',
 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Win64; x64; Trident/4.0)',
 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0)',
 'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.2; .NET4.0C; .NET4.0E)',
 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Maxthon/4.0.6.2000 Chrome/26.0.1410.43 Safari/537.1 ',
 'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.2; .NET4.0C; .NET4.0E; QQBrowser/7.3.9825.400)',
 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:21.0) Gecko/20100101 Firefox/21.0 ',
 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.92 Safari/537.1 LBBROWSER',
 'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0; BIDUBrowser 2.x)',
 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.11 TaoBrowser/3.0 Safari/536.11']
 state = 0;test = 0
 socket.setdefaulttimeout(20) #设置全局超时时间
 while state == 0 and test < 5:
 try:
 request = urllib.request.Request(url=url,headers={"User-Agent":random.choice(user_agent)})#随机从user_agent列表中抽取一个元素
 response = urllib.request.urlopen(request)
 readhtml = response.read()
 content = readhtml.decode('gbk') #读取网页内容
 time.sleep(random.randrange(1,6))
 if re.search('Auth Result',content) == None:
 state = 1
 except Exception as e:
 print('系统IP获取网页失败','',e)
 if 'proxy_ip.txt' not in os.listdir() or os.path.getsize('proxy_ip.txt') == 0:
 print('代理IP池不存在,新建代理IP池')
 pool = proxy_ip(url,5)
 pool.get_ip()
 print('代理IP池创建完毕')
 else:
 f = open('proxy_ip.txt','r')
 proxys_ip = f.readlines()
 f.close()
 random.shuffle(proxys_ip)
 for i in range(len(proxys_ip)):
 try:
 proxy_support = urllib.request.ProxyHandler(eval(proxys_ip[i][:-1]))
 opener = urllib.request.build_opener(proxy_support)
 opener.addheaders=[("User-Agent",random.choice(user_agent))]
 urllib.request.install_opener(opener)
 response = urllib.request.urlopen(url)
 readhtml = response.read()
 content = readhtml.decode('gbk')
 time.sleep(random.randrange(1,6))
 if re.search('Auth Result',content) == None: #排除被判别为无效用户的情况
 state = 1
 print('成功接入代理IP',proxys_ip[i])
 break
 except Exception as e:
 print(proxys_ip[i],'请求失败',e)
 except urllib.error.HTTPError as e: 
 print(proxys_ip[i],'请求失败',e.code)
 except urllib.error.URLError as e:
 print(proxys_ip[i],'请求失败',e.reason)
 try:
 if i == len(proxys_ip)-1:
 os.remove('proxy_ip.txt')
 print('代理IP池失效,已删除')
 except: #i不存在的情况
 os.remove('proxy_ip.txt')
 print('代理IP池为空,文件已删除')
 time.sleep(60)
 test += 1
 if test == 5:
 print('未成功获取 %s 页面内容'%url)
 content = None
 return(content)

HtmlDownloader

四、HTML解析器

HTML解析器主要对HTML下载器下载的网页内容进行解析,提取想要的内容。

本文用到的网页解析方法主要是正则表达式和BeautifulSoup,下面是HTML解析器的代码

# coding:utf-8
import re
from bs4 import BeautifulSoup
import pandas as pd
import urllib.request
import numpy as np
import time
import datetime
class HtmlParser(object):
 '''解析网页内容'''
 def __init__(self,content):
 self.soup = BeautifulSoup(content,"lxml") #待解析内容
 
 def get_header(self):
 '''获取表格标题'''
 try:
 header = []
 for tag in self.soup.thead.find_all('td'):
 title = str(tag)
 title = title.replace(' ','')
 title = title.replace('\n','')
 header.extend(re.findall('>(.*?)<',title))
 header_name = []
 for data in header:
 if data != '':
 header_name.append(data.strip())
 header_name.append('数据时间')
 except: #无标题返回空列表,标记了该内容是否有效
 header_name = []
 return(header_name)
 h2_len = len(self.soup.thead.find_all('td',class_ = "h2"))
 datalist_len = len(self.soup.find_all('tbody',id="datalist") + self.soup.find_all('tbody',id="datalist1") + self.soup.find_all('tbody',id="datalist2"))
 if h2_len >= 6 or datalist_len == 0: #排除了标题格式不统一和没数据的两种情况
 header_name = []
 return(header_name)

 def get_header2(self):
 '''获取表格标题(标题存在两层)'''
 stati_date = []
 for date in self.soup.thead.find_all('td',class_ = "double align_center"):
 stati_date.extend(re.findall('>(.*?)<',str(date)))
 header_total = self.get_header()
 header_name = header_total[:-5]
 header_name = header_name[:2] + header_total[-5:-1] + header_name[2:]
 if stati_date[0] in header_name:
 header_name.remove(stati_date[0])
 if stati_date[1] in header_name:
 header_name.remove(stati_date[1])
 header_name.append('三四列统计时间')
 header_name.append('五六列统计时间')
 header_name.append('数据时间')
 return(header_name,stati_date)
 
 def get_datatime(self):
 '''获取数据时间'''
 try:
 date = re.findall('数据时间:(.*?)<',str(self.soup.find_all('span',class_ = "fl")))[0][0:10]
 except: #若不存在,根据系统时间推断
 now_time = time.localtime()
 if time.strftime("%w",now_time) in ['1','2','3','4','5']:
 date = time.strftime("%Y-%m-%d",now_time)
 elif time.strftime("%w",now_time) == '6':
 dt = (datetime.datetime.now() - datetime.timedelta(days = 1))
 date = dt.strftime("%Y-%m-%d")
 else:
 dt = (datetime.datetime.now() - datetime.timedelta(days = 2))
 date = dt.strftime("%Y-%m-%d")
 return(date)
 
 def get_datalist(self):
 '''获取数据内容'''
 if len(self.soup.find_all('tbody',id="datalist")) >= 1:
 soup = BeautifulSoup(str(self.soup.find_all('tbody',id="datalist")[0]),"lxml")
 elif len(self.soup.find_all('tbody',id="datalist1")) >= 1:
 soup = BeautifulSoup(str(self.soup.find_all('tbody',id="datalist1")[0]),"lxml")
 else:
 soup = BeautifulSoup(str(self.soup.find_all('tbody',id="datalist2")[0]),"lxml")
 date = self.get_datatime()
 row = len(soup.tbody.find_all('tr'))
 #初始化正常标题和双重标题时的数组
 if len(self.soup.thead.find_all('td',class_ = "double align_center")) == 0:
 header_name = self.get_header()
 col = len(header_name)
 datalist = np.array(['']*(row * col),dtype = 'U24').reshape(row,col)
 flag = 1
 else:
 header_name = self.get_header2()[0]
 col = len(header_name)
 datalist = np.array(['']*(row * col),dtype = 'U24').reshape(row,col)
 flag = 2 
 for i in range(row): #提取数据并写入数组
 detail = re.findall('>(.*?)<',str(soup.find_all('tr')[i]))
 for blank in range(detail.count('')):
 detail.remove("")
 try:
 if flag == 1:
 detail.append(date)
 datalist[i] = detail
 elif flag == 2:
 stati_date = self.get_header2()[1]
 detail.append(stati_date[0])
 detail.append(stati_date[1])
 detail.append(date)
 datalist[i] = detail 
 except:
 datalist[i][0] = detail[0]
 datalist[i][col-1] = date
 return(datalist,header_name)
 
 def get_dataframe(self):
 '''组合标题和数据数据为数据框并输出'''
 datalist,header_name = self.get_datalist()
 table = pd.DataFrame(datalist ,columns = header_name)
 return(table)

HtmlParser
金融行业也能用到Python?这就是Python之所以能这么火的原因吧!

 

六、爬虫调度器

爬虫调度器主要将上述几个模块组合起来,合理的分工,高效完成任务。

爬虫调度器采用进程池的方式加快了程序执行的效率,下面是爬虫调度器模块的代码

from firstSpider.UrlManager import UrlManager
from firstSpider.HtmlDownloader import HtmlDownloader
from firstSpider.HtmlParser import HtmlParser
from firstSpider.DataOutput import DataOutput
from sqlalchemy import create_engine
import threadpool,time
 
class SpiderMan(object):
 '''爬虫机器人'''
 def __init__(self,engine,table_name):
 self.engine = engine #数据库连接引擎
 self.table_name = table_name #表名
 self.manager = UrlManager() #URL管理器
 self.downloader = HtmlDownloader() #HTML下载器

 def spider(self,url):
 '''单网页爬虫组件'''
 # HTML下载器下载网页
 html = self.downloader.download(url)
 f = open('stock.txt','w')
 f.write(html)
 f.close()
 # HTML解析器抽取网页数据
 parser = HtmlParser(html)
 if len(parser.get_header()) > 0:
 data = parser.get_dataframe()
 # 数据储存器储存文件
 out = DataOutput(self.engine,data,self.table_name)
 out.output()
 print('%s 的数据已存入表 %s'%(url,self.table_name))
 time.sleep(1)
 return(parser.get_datatime())
 
 def crawl(self,urls):
 '''爬取一个栏目连接列表的内容'''
 self.manager.add_new_urls(urls)
 # 判断url管理器中是否有新的url
 pool = threadpool.ThreadPool(10)
 while(self.manager.has_new_url()):
 # 从URL管理器获取新的url
 new_url = self.manager.get_new_url()
 requests = threadpool.makeRequests(self.spider,(new_url,))
 pool.putRequest(requests[0])
 pool.wait()

SpiderMan

将上述每个模块的代码都新建一个py文件放在firstSpider文件夹下,并运行如下主程序即可获取证券之星全站的股票数据

from firstSpider.get_proxy_ip import proxy_ip
from firstSpider.get_catalog import get_catalog
from firstSpider.get_urls import get_urls
from firstSpider.SpiderMan import SpiderMan
from selenium import webdriver
from sqlalchemy import create_engine
import time

'''根据左侧子导航下载证券之星当天所有数据'''
if __name__ == "__main__":
 print('获取代理IP并验证有效性')
 ip_pool = proxy_ip('http://quote.stockstar.com',8)
 ip_pool.get_ip()
 print('代理IP池建立完毕')
 getcata = get_catalog()
 catalog = getcata.load_catalog()
 start = 0
 end = len(catalog)
 catalog = catalog[start : end]
 print('初始化浏览器')
 browser = webdriver.Chrome()
 engine = create_engine('mysql+pymysql://root:Jwd116875@localhost:3306/scott?charset=utf8')
 for index in range(start,end):
 table_name,url = getcata.index_info(catalog,index)
 stop_url = ['http://quote.stockstar.com/gold/globalcurrency.shtml'] #想过滤掉的网页链接
 if url not in stop_url:
 geturls = get_urls(browser,url)
 urls = geturls.get_urllist()
 print('已获取 %s 的链接列表'%table_name)
 Spider_man = SpiderMan(engine,table_name)
 Spider_man.crawl(urls)
 datatime = Spider_man.spider(urls[0])
 print('%s: %s 栏目 %s 的增量数据爬取完毕'%(index,table_name,datatime))

main

麻雀虽小五脏俱全,以上是用简单的爬虫框架实现的一次全站内容爬取,在执行速度和程序伪装上还有很大提升空间,希望能够与大家一同交流成长。

进群:125240963   即可获取数十篇的PDF哦!