matplotlib库学习(一)
matplotlib库是python中实现数据处理与展示的非常优秀的类库, 它提供了超过100多种的图像处理和现实方法 可以说是非常强大了
我们来看看这个函数:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
train_X = np.linspace(-1, 1, 100) # x 从-1 ~ 1 均匀分布100个样本,默认包括start&endpoint
train_Y = 2 * train_X + np.random.randn(*train_X.shape) * 0.3
plt.plot(train_X, train_Y, 'ro', label = "Original data")#Plot y versus x as lines and/or markers.
plt.plot这句有很强的拓展性,可以根据不同的参数刻画出不同的图像
下面我们来看看这些参数:
train_x : x
train_y: y
The coordinates of the points or line nodes are given by x, y.
x,y 还可以通过标签给定:
使用方法如下:
plot('xlabel', 'ylabel', data=obj)# obj['xlabel']
All indexable objects are supported. This could e.g. be a dict
, a pandas.DataFame
or a structured numpy array.
当要绘制多组x, y, 我们可以这样给定参数:
-
The most straight forward way is just to call
plot
multiple times.
Example:>>> plot(x1, y1, 'bo') >>> plot(x2, y2, 'go')
-
Alternatively, if your data is already a 2d array, you can pass it
directly to x, y. A separate data set will be drawn for every
column.Example: an array ``a`` where the first column represents the *x* values and the other columns are the *y* columns:: >>> plot(a[0], a[1:])
-
The third way is to specify multiple sets of [x], y, [fmt]
groups::>>> plot(x1, y1, 'g^', x2, y2, 'g-') In this case, any additional keyword argument applies to all datasets. Also this syntax cannot be combined with the *data* parameter.
‘ro’ : fmt
The optional parameter fmt is a convenient way for defining basic formatting like color, marker and linestyle.
让我们看具体了解一下这个参数;
"""
Notes
-----
**Format Strings**
A format string consists of a part for color, marker and line::
fmt = '[color][marker][line]'
Each of them is optional. If not provided, the value from the style
cycle is used. Exception: If ``line`` is given, but no ``marker``,
the data will be a line without markers.
**Colors**
The following color abbreviations are supported:
============= ===============================
character color
============= ===============================
``'b'`` blue
``'g'`` green
``'r'`` red
``'c'`` cyan
``'m'`` magenta
``'y'`` yellow
``'k'`` black
``'w'`` white
============= ===============================
If the color is the only part of the format string, you can
additionally use any `matplotlib.colors` spec, e.g. full names
(``'green'``) or hex strings (``'#008000'``).
**Markers**
============= ===============================
character description
============= ===============================
``'.'`` point marker
``','`` pixel marker
``'o'`` circle marker
``'v'`` triangle_down marker
``'^'`` triangle_up marker
``'<'`` triangle_left marker
``'>'`` triangle_right marker
``'1'`` tri_down marker
``'2'`` tri_up marker
``'3'`` tri_left marker
``'4'`` tri_right marker
``'s'`` square marker
``'p'`` pentagon marker
``'*'`` star marker
``'h'`` hexagon1 marker
``'H'`` hexagon2 marker
``'+'`` plus marker
``'x'`` x marker
``'D'`` diamond marker
``'d'`` thin_diamond marker
``'|'`` vline marker
``'_'`` hline marker
============= ===============================
**Line Styles**
============= ===============================
character description
============= ===============================
``'-'`` solid line style
``'--'`` dashed line style
``'-.'`` dash-dot line style
``':'`` dotted line style
============= ===============================
"""
eg:
"""
Example format strings::
'b' # blue markers with default shape
'ro' # red circles
'g-' # green solid line
'--' # dashed line with default color
'k^:' # black triangle_up markers connected by a dotted line
"""
还有一种控制 appearance 的方法 :
"""
You can use `.Line2D` properties as keyword arguments for more
control on the appearance. Line properties and *fmt* can be mixed.
The following two calls yield identical results:
>>> plot(x, y, 'go--', linewidth=2, markersize=12)
>>> plot(x, y, color='green', marker='o', linestyle='dashed',
linewidth=2, markersize=12)
"""
值得注意的是, 当两者有冲突的时候, 后者占主导地位
上一篇: jQuery照片伸缩效果不影响其他元素的布局_jquery
下一篇: spring 任务调度