Python爬虫学习日记二 抓取
程序员文章站
2022-03-20 23:31:27
...
Python爬虫学习日记二
冰冠 2018年06月14日08:59:27
从网页中抽取数据,实现某些事情的做法成为抓取(scraping)
1、分析网页数据
通过各种web开发者工具可以进行分析
2、三种网页抓取方法
2.1正则表达式
有关正则表达式的内容具体请看
https://blog.csdn.net/ice_cap1995/article/details/80694675
2.2Beautiful Soup
Beautiful Soup是一个python模块,该模块可以解析网页 安装
pip install beautifulsoup4
Beautiful soup的使用
(1)将已下载的html内容解析为soup文档(2)查找
beautifulsoup 能够正确解析缺失的引号并闭合标签。
安装也更为复杂,安装说明请看官方文档:http://Lxml.de/installation.html
选择多有标签 *
选择<a>标签 a
选择所有class="link"的元素 .link
选择所有class="link"的<a>标签 a.link
选择id="link"的<a>标签 a#link
选择父元素为<a>标签的所有span标签 a > span
选择<a>标签你恶不的所有<span>标签 a span
选择title属性为"'home"的所有<a>标签 a[title=home]\
2.4总结
抓取方法 性能 使用难度 安装难度
正则表达式 快 困难 简单(内置模块)
BeautifulSoup 慢 简单 简单(纯Python)
Lxml 快 简单 相对困难
通常情况下 lxml是最好的选择方式,该方法即快速又健壮
3、为链接爬虫添加抓取回调
冰冠 2018年06月14日08:59:27
从网页中抽取数据,实现某些事情的做法成为抓取(scraping)
1、分析网页数据
通过各种web开发者工具可以进行分析
2、三种网页抓取方法
2.1正则表达式
有关正则表达式的内容具体请看
https://blog.csdn.net/ice_cap1995/article/details/80694675
2.2Beautiful Soup
Beautiful Soup是一个python模块,该模块可以解析网页 安装
pip install beautifulsoup4
Beautiful soup的使用
(1)将已下载的html内容解析为soup文档(2)查找
beautifulsoup 能够正确解析缺失的引号并闭合标签。
from day01_crawl import crawling
from bs4 import BeautifulSoup
url = 'http://example.webscraping.com/places/default/view/China-47'
html = crawling.download(url)
soup = BeautifulSoup(html,"lxml")
tr = soup.find(attrs={'id':'places_area__row'})
td = tr.find(attrs={'class':'w2p_fw'})
area = td.text
print(area)
2.3Lxml
Lxml是基于libxml2的python 的封装,该模块使用c语言编写,解析速度快于BeautifulSoup安装也更为复杂,安装说明请看官方文档:http://Lxml.de/installation.html
import lxml.html
broken_html = '<ul class=country><li>Area<li>Population</ul>'
tree = lxml.html.fromstring(broken_html)
fixed_html = lxml.html.tostring(tree, pretty_print=True)
print(fixed_html.decode('utf-8'))
使用lxml的css选择器import crawling
url = 'http://example.webscraping.com/places/default/view/China-47'
html = crawling.download(url)
tree = lxml.html.fromstring(html)
td=tree.cssselect('tr#places_area__row>td.w2p_fw')[0]
area = td.text_content()
print(area)
附:css选择器 不支持的功能可以查看https://cssselect.readthedocs.io/en/latest/#id8选择多有标签 *
选择<a>标签 a
选择所有class="link"的元素 .link
选择所有class="link"的<a>标签 a.link
选择id="link"的<a>标签 a#link
选择父元素为<a>标签的所有span标签 a > span
选择<a>标签你恶不的所有<span>标签 a span
选择title属性为"'home"的所有<a>标签 a[title=home]\
2.4总结
抓取方法 性能 使用难度 安装难度
正则表达式 快 困难 简单(内置模块)
BeautifulSoup 慢 简单 简单(纯Python)
Lxml 快 简单 相对困难
通常情况下 lxml是最好的选择方式,该方法即快速又健壮
3、为链接爬虫添加抓取回调
为了复用已经写好的部分爬虫代码爬取其他网站,需要添加一个回调函数,在此起名为callback,包含url和html两个参数,并且可以返回一个待爬取的url列表
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
""" @author [email protected]
@function:
@create 18-6-14 上午10:48"""
import re
import csv
import lxml.html
from day02_scraping.crawling import link_crawler
class ScrapeCallback:
def __init__(self):
self.fields = (
'area', 'population', 'iso', 'country', 'capital', 'continent', 'tld', 'currency_code',
'currency_name', 'phone', 'postal_code_format', 'postal_code_regex', 'languages',
'neighbours')
self.write_2_file('countries.csv',self.fields)
def write_2_file(self,file_name,row):
with open(file_name, 'w', newline='') as csvfile:
self.writer = csv.writer(csvfile, delimiter=' ',
quotechar='|', quoting=csv.QUOTE_MINIMAL)
self.writer.writerow(row)
# 对象作为函数被调用是会调用该方法即 ScrapeCallback(url,html)和ScrapeCallback.__cell__(url,html)是等价的
def __call__(self, url, html):
if re.search('/view/', url):
print(html.decode('utf-8'))
tree = lxml.html.fromstring(html)
row = []
for field in self.fields:
row.append(tree.cssselect('table > tr#places_{0}__row > td.w2p_fw'.format(field))[
0].text_content())
self.write_2_file('countries.csv',row)
if __name__ == '__main__':
link_crawler('http://example.webscraping.com/places/default/view/Zimbabwe-252', '(.*?)/(index|view)', scrape_callback=ScrapeCallback())
附:能用的链接爬虫示例
https://github.com/ice1995/python_web_crawler-/tree/master/day02_scraping
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
""" @author [email protected]
@function:
@create 18-6-14 上午10:39"""''
import lxml.html
import re
import urllib.parse
import urllib.request
import time
import csv
from datetime import datetime
import urllib.robotparser
import queue
FIELDS = ('area', 'population', 'iso', 'country', 'capital', 'continent', 'tld', 'currency_code',
'currency_name', 'phone', 'postal_code_format', 'postal_code_regex', 'languages',
'neighbours')
def link_crawler(seed_url, link_regex=None, delay=5, max_depth=-1, max_urls=-1, headers=None,
user_agent='wswp', proxy=None, num_retries=1, scrape_callback=None):
"""Crawl from the given seed URL following links matched by link_regex
"""
# the queue of URL's that still need to be crawled
crawl_queue = [seed_url]
# the URL's that have been seen and at what depth
seen = {seed_url: 0}
# track how many URL's have been downloaded
num_urls = 0
rp = get_robots(seed_url)
throttle = Throttle(delay)
headers = headers or {}
if user_agent:
headers['User-agent'] = user_agent
while crawl_queue:
url = crawl_queue.pop()
depth = seen[url]
# check url passes robots.txt restrictions
if rp.can_fetch(user_agent, url):
throttle.wait(url)
html = download(url, headers, proxy=proxy, num_retries=num_retries)
links = []
if scrape_callback:
links.extend(scrape_callback(url, html) or [])
if depth != max_depth:
# can still crawl further
if link_regex:
# filter for links matching our regular expression
links.extend(link for link in get_links(html) if re.match(link_regex, link))
for link in links:
link = normalize(seed_url, link)
# check whether already crawled this link
if link not in seen:
seen[link] = depth + 1
# check link is within same domain
if same_domain(seed_url, link):
# success! add this new link to queue
crawl_queue.append(link)
# check whether have reached downloaded maximum
num_urls += 1
if num_urls == max_urls:
break
else:
print('Blocked by robots.txt:', url)
class Throttle:
"""Throttle downloading by sleeping between requests to same domain
"""
def __init__(self, delay):
# amount of delay between downloads for each domain
self.delay = delay
# timestamp of when a domain was last accessed
self.domains = {}
def wait(self, url):
"""Delay if have accessed this domain recently
"""
domain = urllib.parse.urlsplit(url).netloc
last_accessed = self.domains.get(domain)
if self.delay > 0 and last_accessed is not None:
sleep_secs = self.delay - (datetime.now() - last_accessed).seconds
if sleep_secs > 0:
time.sleep(sleep_secs)
self.domains[domain] = datetime.now()
def download(url, headers, proxy, num_retries, data=None):
print('Downloading:', url)
request = urllib.request.Request(url, data, headers)
opener = urllib.request.build_opener()
if proxy:
proxy_params = {urllib.parse.urllib.parse(url).scheme: proxy}
opener.add_handler(urllib.request.ProxyHandler(proxy_params))
try:
response = opener.open(request)
html = response.read()
code = response.code
except urllib.request.URLError as e:
print('Download error:', e.reason)
html = ''
if hasattr(e, 'code'):
code = e.code
if num_retries > 0 and 500 <= code < 600:
# retry 5XX HTTP errors
html = download(url, headers, proxy, num_retries - 1, data)
else:
code = None
return html
def normalize(seed_url, link):
"""Normalize this URL by removing hash and adding domain
"""
link, _ = urllib.parse.urldefrag(link) # remove hash to avoid duplicates
return urllib.parse.urljoin(seed_url, link)
def same_domain(url1, url2):
"""Return True if both URL's belong to same domain
"""
return urllib.parse.urlparse(url1).netloc == urllib.parse.urlparse(url2).netloc
def get_robots(url):
"""Initialize robots parser for this domain
"""
rp = urllib.robotparser.RobotFileParser()
rp.set_url(urllib.parse.urljoin(url, '/robots.txt'))
rp.read()
return rp
def get_links(html):
"""Return a list of links from html
"""
# a regular expression to extract all links from the webpage
webpage_regex = re.compile('<a[^>]+href=["\'](.*?)["\']', re.IGNORECASE)
# list of all links from the webpage
return webpage_regex.findall(html.decode('utf-8'))
def scrape_callback(url, html):
if re.search('/view/', url):
tree = lxml.html.fromstring(html)
row = [tree.cssselect('table > tr#places_%s__row > td.w2p_fw' % field)[0].text_content()
for field in FIELDS]
print(url, row)
class ScrapeCallback:
def __init__(self):
self.fields = (
'area', 'population', 'iso', 'country', 'capital', 'continent', 'tld', 'currency_code',
'currency_name', 'phone', 'postal_code_format', 'postal_code_regex', 'languages',
'neighbours')
self.write_2_file('countries.csv', self.fields)
def write_2_file(self, file_name, row):
with open(file_name, 'a+') as csvfile:
self.writer = csv.writer(csvfile, delimiter=' ',
quotechar='|', quoting=csv.QUOTE_MINIMAL)
self.writer.writerow(row)
# 对象作为函数被调用是会调用该方法即 ScrapeCallback(url,html)和ScrapeCallback.__cell__(url,html)是等价的
def __call__(self, url, html):
if re.search('/view/', url):
tree = lxml.html.fromstring(html)
row = []
for field in self.fields:
list = tree.cssselect('table > tr#places_{0}__row > td.w2p_fw'.format(field))
if len(list) > 0:
row.append(list[0].text_content())
self.write_2_file('countries.csv', row)
if __name__ == '__main__':
# link_crawler('http://example.webscraping.com', '/(index|view)', delay=0, num_retries=1, user_agent='BadCrawler')
# link_crawler('http://example.webscraping.com', '/(index|view)', delay=0, num_retries=1, max_depth=1, user_agent='GoodCrawler')
# link_crawler('http://example.webscraping.com/', '/(index|view)',scrape_callback=scrape_callback)
link_crawler('http://example.webscraping.com/', '(.*?)/(index|view)',
scrape_callback=ScrapeCallback())
上一篇: 人类简史读书笔记