欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

基于LSTM的Mnist数字识别(tensorflow实现)

程序员文章站 2024-03-25 11:11:46
...
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
# 导入 MINST 数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

n_input = 28            # MNIST data 输入 (img shape: 28*28)
n_steps = 28        # timesteps
n_hidden = 128      # hidden layer num of features
n_classes = 10      # MNIST 列别 (0-9 ,一共10类)
batch_size = 128

tf.reset_default_graph()
# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])

stacked_rnn = []
for i in range(3):
    stacked_rnn.append(tf.contrib.rnn.LSTMCell(n_hidden))
mcell = tf.contrib.rnn.MultiRNNCell(stacked_rnn)

x1 = tf.unstack(x, n_steps, 1)
outputs, states = tf.contrib.rnn.static_rnn(mcell, x1, dtype=tf.float32)
pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)

learning_rate = 0.001
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

training_iters = 100000
display_step = 10

# 启动session
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    step = 1
    # Keep training until reach max iterations
    while step * batch_size < training_iters:
        batch_x, batch_y = mnist.train.next_batch(batch_size)
        # Reshape data to get 28 seq of 28 elements
        batch_x = batch_x.reshape((batch_size, n_steps, n_input))
        # Run optimization op (backprop)
        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
        if step % display_step == 0:
            # 计算批次数据的准确率
            acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
            # Calculate batch loss
            loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
            print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " +  "{:.6f}".format(loss) + ", Training Accuracy= " +  "{:.5f}".format(acc))
        step += 1
    print (" Finished!")

    # 计算准确率 for 128 mnist test images
    test_len = 100
    test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
    test_label = mnist.test.labels[:test_len]
    print ("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
相关标签: RNN