基于LSTM的Mnist数字识别(tensorflow实现)
程序员文章站
2024-03-25 11:11:46
...
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
# 导入 MINST 数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
n_input = 28 # MNIST data 输入 (img shape: 28*28)
n_steps = 28 # timesteps
n_hidden = 128 # hidden layer num of features
n_classes = 10 # MNIST 列别 (0-9 ,一共10类)
batch_size = 128
tf.reset_default_graph()
# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
stacked_rnn = []
for i in range(3):
stacked_rnn.append(tf.contrib.rnn.LSTMCell(n_hidden))
mcell = tf.contrib.rnn.MultiRNNCell(stacked_rnn)
x1 = tf.unstack(x, n_steps, 1)
outputs, states = tf.contrib.rnn.static_rnn(mcell, x1, dtype=tf.float32)
pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)
learning_rate = 0.001
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
training_iters = 100000
display_step = 10
# 启动session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Reshape data to get 28 seq of 28 elements
batch_x = batch_x.reshape((batch_size, n_steps, n_input))
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
if step % display_step == 0:
# 计算批次数据的准确率
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))
step += 1
print (" Finished!")
# 计算准确率 for 128 mnist test images
test_len = 100
test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
test_label = mnist.test.labels[:test_len]
print ("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
上一篇: 使用脚本对代码混淆
下一篇: Win10家庭版安装Docker
推荐阅读
-
基于LSTM的Mnist数字识别(tensorflow实现)
-
Tensorflow 实战Google深度学习框架——学习笔记(六)LeNet-5网络实现MNIST手写数字集识别
-
简洁明了的tensorflow2.0教程——用keras实现mnist数字识别
-
基于OpenCV实现最简单的数字识别
-
详解python实现识别手写MNIST数字集的程序
-
手写数字识别------用TensorFlow实现简单的单层神经网络
-
python tensorflow基于cnn实现手写数字识别
-
Python(TensorFlow框架)实现手写数字识别系统的方法
-
基于MNIST手写数字数据集的数字识别小程序
-
python tensorflow基于cnn实现手写数字识别