欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

数据结构与算法08 之堆 博客分类: 数据结构 数据结构基础 

程序员文章站 2024-03-24 22:04:40
...

        优先级队列可以用有序数组来实现,这种做法的问题是,尽管删除最大数据项的时间复杂度为O(1),但是插入还是需要较长的O(N)时间,这是因为必须移动数组中平均一半的数据项以插入新数据项,并在完成插入后,数组依然有序。

        这里介绍实现优先级队列的另一种结构:堆。堆是一种树,并非java和C++等编译语言里的“堆”。由它实现的优先级队列的插入和删除的时间复杂度都是O(logN)。尽管这样删除的时间变慢了一些,但是插入的时间快的多了。当速度非常重要,且有很多插入操作是,可以选择堆来实现优先级队列。堆有如下特点:

        ·它是完全二叉树。即除了树的最后一层节点不需要是满的外,其他的每一层从左到右都完全是满的。

        ·它常常用一个数组实现。用数组实现的完全二叉树中,节点的索引有如下特点(设该节点的索引为x):

             它的父节点的索引为 (x-1) / 2;

             它的左子节点索引为 2*x + 1;

             它的右子节点索引为 2*x + 2。

        ·堆中每个节点的关键字都大于(或等于)这个节点的子节点的关键字。这也是堆中每个节点必须满足的条件。所以堆和二叉搜索树相比,是弱序的。

        向堆中插入数据,首先将数据项存放到叶节点中(即存到数组的最后一项),然后从该节点开始,逐级向上调整,直到满足堆中节点关键字的条件为止。

        从堆中删除数据与插入不同,删除时永远删除根节点的数据,因为根节点的数据最大,删除完后,将最后一个叶节点移到根的位置,然后从根开始,逐级向下调整,直到满足堆中节点关键字的条件为止。具体的看下面的代码:

 

  1. public class Heap {  
  2.       
  3.     private Node[] heapArray;  
  4.     private int maxSize;  
  5.     private int currentSize;  
  6.       
  7.     public Heap(int mx) {  
  8.         maxSize = mx;  
  9.         currentSize = 0;  
  10.         heapArray = new Node[maxSize];  
  11.     }  
  12.       
  13.     public boolean isEmpty() {  
  14.         return (currentSize == 0)? true : false;  
  15.     }  
  16.       
  17.     public boolean isFull() {  
  18.         return (currentSize == maxSize)? true : false;  
  19.     }  
  20.       
  21.     public boolean insert(int key) {  
  22.         if(isFull()) {  
  23.             return false;  
  24.         }  
  25.         Node newNode = new Node(key);  
  26.         heapArray[currentSize] = newNode;  
  27.         trickleUp(currentSize++);  
  28.         return true;  
  29.     }  
  30.     //向上调整  
  31.     public void trickleUp(int index) {  
  32.         int parent = (index - 1) / 2//父节点的索引  
  33.         Node bottom = heapArray[index]; //将新加的尾节点存在bottom中  
  34.         while(index > 0 && heapArray[parent].getKey() < bottom.getKey()) {  
  35.             heapArray[index] = heapArray[parent];  
  36.             index = parent;  
  37.             parent = (parent - 1) / 2;  
  38.         }  
  39.         heapArray[index] = bottom;  
  40.     }  
  41.       
  42.     public Node remove() {  
  43.         Node root = heapArray[0];  
  44.         heapArray[0] = heapArray[--currentSize];  
  45.         trickleDown(0);  
  46.         return root;  
  47.     }  
  48.     //向下调整  
  49.     public void trickleDown(int index) {  
  50.         Node top = heapArray[index];  
  51.         int largeChildIndex;  
  52.         while(index < currentSize/2) { //while node has at least one child  
  53.             int leftChildIndex = 2 * index + 1;  
  54.             int rightChildIndex = leftChildIndex + 1;  
  55.             //find larger child  
  56.             if(rightChildIndex < currentSize &&  //rightChild exists?  
  57.                     heapArray[leftChildIndex].getKey() < heapArray[rightChildIndex].getKey()) {  
  58.                 largeChildIndex = rightChildIndex;  
  59.             }  
  60.             else {  
  61.                 largeChildIndex = leftChildIndex;  
  62.             }  
  63.             if(top.getKey() >= heapArray[largeChildIndex].getKey()) {  
  64.                 break;  
  65.             }  
  66.             heapArray[index] = heapArray[largeChildIndex];  
  67.             index = largeChildIndex;  
  68.         }  
  69.         heapArray[index] = top;  
  70.     }  
  71.     //根据索引改变堆中某个数据  
  72.     public boolean change(int index, int newValue) {  
  73.         if(index < 0 || index >= currentSize) {  
  74.             return false;  
  75.         }  
  76.         int oldValue = heapArray[index].getKey();  
  77.         heapArray[index].setKey(newValue);  
  78.         if(oldValue < newValue) {  
  79.             trickleUp(index);  
  80.         }  
  81.         else {  
  82.             trickleDown(index);  
  83.         }  
  84.         return true;  
  85.     }  
  86.       
  87.     public void displayHeap() {  
  88.         System.out.println("heapArray(array format): ");  
  89.         for(int i = 0; i < currentSize; i++) {  
  90.             if(heapArray[i] != null) {  
  91.                 System.out.print(heapArray[i].getKey() + " ");  
  92.             }  
  93.             else {  
  94.                 System.out.print("--");  
  95.             }  
  96.         }  
  97.     }  
  98. }  
  99. class Node {  
  100.     private int iData;  
  101.     public Node(int key) {  
  102.         iData = key;  
  103.     }  
  104.       
  105.     public int getKey() {  
  106.         return iData;  
  107.     }  
  108.       
  109.     public void setKey(int key) {  
  110.         iData = key;  
  111.     }  
  112. }  

 

 

http://blog.csdn.net/eson_15/article/details/51105955

相关标签: 数据结构基础