欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Nvidia Jetson Nano 安装

程序员文章站 2024-03-23 17:59:16
...

官方安装步骤

参考: https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#intro

注意问题:
1、制作SD 镜像时,支持128GB的SD卡,刚开始用的SD卡读卡器太差,导致做出来的boot image启动不了,后面换了好的读卡器,用etcher烧写成功;
2、供电,通过5V,2.5A的micro USB供电会突然重启,换成了直流电源,跳到5.4V, 用电源口供电J48跳线帽要短接

Nvidia Jetson Nano 安装

性能

$ sudo nvpmodel -q --verbose
参考:https://docs.nvidia.com/deeplearning/dgx/install-tf-xavier/index.html

官方数据

https://devblogs.nvidia.com/jetson-nano-ai-computing/

Nvidia Jetson Nano 安装

安装tensorflow

官方:https://docs.nvidia.com/deeplearning/dgx/install-tf-xavier/index.html

$ pip3 install --pre --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v42 tensorflow-gpu

运行标准的mobilenetv2

参考:https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet

  1. 下载:
    模型:wget https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.0_224.tgz
    图片:wget https://upload.wikimedia.org/wikipedia/commons/f/fe/Giant_Panda_in_Beijing_Zoo_1.JPG -O panda.jpg

  2. 在models-master/research/slim目录运行,test.py, 修改来自https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_example.ipynb

import tensorflow as tf
from nets.mobilenet import mobilenet_v2
from datasets import imagenet
import PIL
import numpy as np
import sys
import time
sys.path.append('/home/nvlab/ai/models-master/research/slim')

base_name = "mobilenet_v2_1.0_224"
checkpoint = base_name + '.ckpt'

tf.reset_default_graph()

# For simplicity we just decode jpeg inside tensorflow.
# But one can provide any input obviously.
file_input = tf.placeholder(tf.string, ())

image = tf.image.decode_jpeg(tf.read_file(file_input))

images = tf.expand_dims(image, 0)
images = tf.cast(images, tf.float32) / 128.  - 1
images.set_shape((None, None, None, 3))
images = tf.image.resize_images(images, (224, 224))

# Note: arg_scope is optional for inference.
with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope(is_training=False)):
  logits, endpoints = mobilenet_v2.mobilenet(images)

# Restore using exponential moving average since it produces (1.5-2%) higher
# accuracy
ema = tf.train.ExponentialMovingAverage(0.999)
vars = ema.variables_to_restore()

saver = tf.train.Saver(vars)



with tf.Session() as sess:
  saver.restore(sess,  checkpoint)
  x = endpoints['Predictions'].eval(feed_dict={file_input: 'panda.jpg'})
label_map = imagenet.create_readable_names_for_imagenet_labels()
print("Top 1 prediction: ", x.argmax(),label_map[x.argmax()], x.max())

img = np.array(PIL.Image.open('panda.jpg').resize((224, 224))).astype(np.float) / 128 - 1
gd = tf.GraphDef.FromString(open(base_name + '_frozen.pb', 'rb').read())
inp, predictions = tf.import_graph_def(gd,  return_elements = ['input:0', 'MobilenetV2/Predictions/Reshape_1:0'])
with tf.Session(graph=inp.graph):
  print(time.time())
  x = predictions.eval(feed_dict={inp: img.reshape(1, 224,224, 3)})
  x = predictions.eval(feed_dict={inp: img.reshape(1, 224,224, 3)})
  x = predictions.eval(feed_dict={inp: img.reshape(1, 224,224, 3)})
  x = predictions.eval(feed_dict={inp: img.reshape(1, 224,224, 3)})
  x = predictions.eval(feed_dict={inp: img.reshape(1, 224,224, 3)})
  print(time.time())

label_map = imagenet.create_readable_names_for_imagenet_labels()
print("Top 1 Prediction: ", x.argmax(),label_map[x.argmax()], x.max())

测试时间为2s,显然不符合,需要运行优化后的TensorRT模型

运行官方优化过的TensorRT mobilenetv2

参考:https://devtalk.nvidia.com/default/topic/1049802/jetson-nano/object-detection-with-mobilenet-ssd-slower-than-mentioned-speed/
步骤

下载准备
$ cd ~/Downloads/
$ wget --no-check-certificate 'https://nvidia.box.com/shared/static/8oqvmd79llr6lq1fr43s4fu1ph37v8nt.gz' -O ssd-mobilenet-v2.tar.gz
$ tar -xvf ssd-mobilenet-v2.tar.gz
$ cd ssd-mobilenet-v2
$ sudo cp -R sampleUffSSD_rect /usr/src/tensorrt/samples
$ sudo cp sample_unpruned_mobilenet_v2.uff /usr/src/tensorrt/data/ssd/
$ sudo cp image1.ppm /usr/src/tensorrt/data/ssd/

编译
$ cd /usr/src/tensorrt/samples/sampleUffSSD_rect
$ sudo make

运行
$ sudo jetson_clocks
$ cd /usr/src/tensorrt/bin
$ sudo ./sample_uff_ssd_rect

测试时间为26ms,接近官方的数据

安装pycuda

出现找不到"cuda.h"和curand库

 src/cpp/cuda.hpp:14:10: fatal error: cuda.h: No such file or directory

 /usr/bin/ld: cannot find -lcurand
  collect2: error: ld returned 1 exit status
  error: command 'aarch64-linux-gnu-g++' failed with exit status 1

  ----------------------------------------
  Failed building wheel for pycuda

查找发现库不在标准路径

aaa@qq.com:~$ find /usr/local -name "cuda.h"
/usr/local/cuda-10.0/targets/aarch64-linux/include/cuda.h

aaa@qq.com:~$ find /usr/local -name "libcurand.so"
/usr/local/cuda-10.0/targets/aarch64-linux/lib/libcurand.so
/usr/local/cuda-10.0/targets/aarch64-linux/lib/stubs/libcurand.so

执行下面安装命令成功

export CPATH=$CPATH:/usr/local/cuda/targets/aarch64-linux/include
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda-10.0/targets/aarch64-linux/lib/
pip3 install 'pycuda>=2017.1.1'

开发demo

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html
参考:https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#importing_trt_python

1 下载训练好的模型
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

2 转换模型
2.1 Freezing
参考:https://www.tensorflow.org/guide/extend/model_files#freezing

2.2 convert_to_uff.py
convert_to_uff.py命令位于:/usr/lib/python3.6/dist-packages/uff/bin

python3 convert_to_uff.py ../../ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb
结果异常

Traceback (most recent call last):
  File "convert_to_uff.py", line 93, in <module>
    main()
  File "convert_to_uff.py", line 89, in main
    debug_mode=args.debug
  File "/usr/lib/python3.6/dist-packages/uff/converters/tensorflow/conversion_helpers.py", line 187, in from_tensorflow_frozen_model
    return from_tensorflow(graphdef, output_nodes, preprocessor, **kwargs)
  File "/usr/lib/python3.6/dist-packages/uff/converters/tensorflow/conversion_helpers.py", line 157, in from_tensorflow
    debug_mode=debug_mode)
  File "/usr/lib/python3.6/dist-packages/uff/converters/tensorflow/converter.py", line 94, in convert_tf2uff_graph
    uff_graph, input_replacements, debug_mode=debug_mode)
  File "/usr/lib/python3.6/dist-packages/uff/converters/tensorflow/converter.py", line 79, in convert_tf2uff_node
    op, name, tf_node, inputs, uff_graph, tf_nodes=tf_nodes, debug_mode=debug_mode)
  File "/usr/lib/python3.6/dist-packages/uff/converters/tensorflow/converter.py", line 47, in convert_layer
    return cls.registry_[op](name, tf_node, inputs, uff_graph, **kwargs)
  File "/usr/lib/python3.6/dist-packages/uff/converters/tensorflow/converter_functions.py", line 184, in convert_transpose
    raise UffException("Transpose permutation has op " + str(tf_permutation_node.op) + ", expected Const. Only constant permuations are supported in UFF.")
uff.model.exceptions.UffException: Transpose permutation has op Sub, expected Const. Only constant permuations are supported in UFF.

论坛帖子的答复是TensorRT uff对一些操作还不支持,需要用TF-TRT, 详见: https://devtalk.nvidia.com/default/topic/1048051/convert-a-mask-rcnn-with-tfs-fronzen-graph-format-to-uff-fail/

Nvidia Jetson Nano 安装

3 tf-tensorrt
参考:https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html

python demo

https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples

 

相关标签: 边缘计算