欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【MapReduce实例】数据去重

程序员文章站 2024-03-19 16:59:22
...

一、实例描述

数据去重是利用并行化思想来对数据进行有意义的筛选。统计大数据集上的数据种类个数、从网站日志中计算访问等这些看似庞大的任务都会涉及数据去重。

比如,输入文件
file1.txt,其内容如下:
2017-12-9 a
2017-12-10 b
2017-12-11 c
2017-12-12 d
2017-12-13 a
2017-12-14 b
2017-12-15 c
2017-12-11 c

file2.txt,其内容如下:
2017-12-9 b
2017-12-10 a
2017-12-11 b
2017-12-12 d
2017-12-13 a
2017-12-14 c
2017-12-15 d
2017-12-11 c

对应上面给出的输入样例,其输出样例为:
2017-12-9 a
2017-12-9 b
2017-12-10 a
2017-12-10 b
2017-12-11 b
2017-12-11 c
2017-12-12 d
2017-12-13 a
2017-12-14 b
2017-12-14 c
2017-12-15 c
2017-12-15 d

二、设计思路

由于要去除重复的数据,我们可以考虑直接将一行数据作为Map和Reduce函数处理后的key值。
【MapReduce实例】数据去重

1. job的处理过程如图所示
(1)Map函数设计
Map函数的实现目的:
<1, 2017-12-9 a> ——> <2017-12-9 a, “ ”>

输入的每一行的数据都当作key,value赋空格即可,因此Map函数的设计如下:

public static class DedupCleanMapper extends Mapper<LongWritable, Text, Text, Text> {

        private static Text line = new Text();

        @Override
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
                throws IOException, InterruptedException {
            line = value;
            context.write(line, new Text(""));
        }
    }

(2)Reduce函数设计
Reduce函数的实现目的:

由于重复的数据需要剔除,于是对于同样的key不需进行汇聚操作,直接保存key值即可,因此Reduce函数的设计如下:

public static class DedupCleanReducer extends Reducer<Text, Text, Text, Text> {
        @Override
        protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context)
                throws IOException, InterruptedException {
            context.write(key, new Text(""));
        }
    }

三、完整代码

package com.walker.mrdemo;

import java.io.IOException;
import java.net.URI;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class DedupClean {

    /*
     * Map函数
     */
    public static class DedupCleanMapper extends Mapper<LongWritable, Text, Text, Text> {

        private static Text line = new Text();

        @Override
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
                throws IOException, InterruptedException {
            line = value;
            context.write(line, new Text(""));
        }
    }

    /*
     * Reduce函数
     */
    public static class DedupCleanReducer extends Reducer<Text, Text, Text, Text> {
        @Override
        protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context)
                throws IOException, InterruptedException {
            context.write(key, new Text(""));
        }
    }

    // 输入输出路径设置
    private static final String FILE_IN_PATH = "hdfs://192.168.50.130:9000/mrdemo/DedupClean/input";
    private static final String FILE_OUT_PATH = "hdfs://192.168.50.130:9000/mrdemo/DedupClean/output";

    public static void main(String[] args) throws Exception {

        Configuration conf = new Configuration();

        // 删除已存在的输出目录
        FileSystem fileSystem = FileSystem.get(new URI(FILE_OUT_PATH), conf);
        if (fileSystem.exists(new Path(FILE_OUT_PATH))) {
            fileSystem.delete(new Path(FILE_OUT_PATH), true);
        }

        Job job = Job.getInstance(conf, "DedupClean");

        job.setJarByClass(DedupClean.class);
        job.setMapperClass(DedupCleanMapper.class);
        job.setReducerClass(DedupCleanReducer.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

        FileInputFormat.addInputPath(job, new Path(FILE_IN_PATH));
        FileOutputFormat.setOutputPath(job, new Path(FILE_OUT_PATH));

        job.waitForCompletion(true);
    }
}