欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

networkx 笔记汇总

程序员文章站 2024-03-15 21:26:12
...

参考教程资料

笔记

有向图和无向图都可以给边赋予权重,用到的方法是add_weighted_edges_from,它接受1个或多个三元组[u,v,w]作为参数,其中u是起点,v是终点,w是权重。例如:

G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

如果想读取权重,可以使用get_edge_data方法,它接受两个参数u和v,即边的起讫点。例如:

print G.get_edge_data(1,2)                   #输出{'weight': 7.5}

NetworkX提供了常用的图论经典算法,例如DFS、BFS、最短路、最小生成树、最大流等等,非常丰富,如果不做复杂网络,只作图论方面的工作,也可以应用NetworkX作为基本的开发包。具体的算法调用方法我就不一一介绍了,可以浏览NX的在线手册http://networkx.lanl.gov/reference/algorithms.html,对每个算法都提供了详细的帮助文档和示例。下面只给出一个最短路算法的例子:

path=nx.all_pairs_shortest_path(G)      #调用多源最短路径算法,计算图G所有节点间的最短路径
print path[0][2]                        #输出节点0、2之间的最短路径序列: [0, 1, 2]

画无向图

import networkx as nx
edgelist = [(0, 1), (1, 2), (2, 3)]
H = nx.Graph(edgelist)
nx.draw_networkx(H)

打印各节点间权重

import networkx as nx
FG = nx.Graph()
FG.add_weighted_edges_from([(1, 2, 0.125), (1, 3, 0.75), (2, 4, 1.2), (3, 4, 0.375)])
for n, nbrs in FG.adj.items():
   for nbr, eattr in nbrs.items():
       wt = eattr['weight']
       if wt < 0.5: print('(%d, %d, %.3f)' % (n, nbr, wt))

获取边权重

import networkx as nx
G.add_edge(1, 2, weight=4.7)
G.add_edges_from([(3, 4), (4, 5)], color='red')
G.add_edges_from([(1, 2, {'color': 'blue'}), (2, 3, {'weight': 8})])
# G[1][2]['weight'] = 4.7
# G.edges[3, 4]['weight'] = 4.2
print(G[1][2])       # 获取权重 #
nx.draw_networkx(G)

出入度

import networkx as nx
DG.add_weighted_edges_from([(1, 2, 0.5), (3, 1, 0.75), (1, 4, 1), (1, 5, 2), (6, 1, 5)])

print(DG.out_degree(1, weight='weight'))    # 出度权重之和 #
print(DG.out_degree(1))                     # 出度 #
print(DG.in_degree(1, weight='weight'))     # 入度权重之和 #
print(DG.in_degree(1))                      # 入度 #
print(DG.degree(1, weight='weight'))        # 节点1的出入度权重之和 #
print(DG.degree(1))                         # 出入度 #
print(DG.degree(weight='weight'))           # 所有节点的出入度权重之和 #

print(list(DG.successors(1)))
print(list(DG.neighbors(1)))                # 节点1所指向的节点编号 #
print(DG.edges())
print(DG.nodes())
print(DG.out_edges(1))                      # 出边 #
print(DG.in_edges(1))                       # 入边 #
print(DG.number_of_nodes())                 # 节点数 #
print(DG.number_of_edges())                 # 边数 #
nx.draw_networkx(DG)
plt.show()

绘制一幅图

plt.figure() #创建一幅图
nx.draw(G , node_color='y', with_labels=True, node_size=800)    #node_color='y'表示绘制节点的颜色为黄色,默认为红色;with_labels=True使节点上显示节点的名字,默认为False;node_size设置节点大小,默认为300
plt.show()

NetworkX提供了一系列样式参数,可以用来修饰和美化图形,达到我们想要的效果。常用的参数包括:

  • node_size: 指定节点的尺寸大小(默认是300,单位未知,就是上图中那么大的点)
  • node_color: 指定节点的颜色 (默认是红色,可以用字符串简单标识颜色,例如’r’为红色,’b’为绿色等,具体可查看手册)
  • node_shape: 节点的形状(默认是圆形,用字符串’o’标识,具体可查看手册)
  • alpha: 透明度 (默认是1.0,不透明,0为完全透明)
  • width: 边的宽度 (默认为1.0)
  • edge_color: 边的颜色(默认为黑色)
  • style: 边的样式(默认为实现,可选: solid|dashed|dotted,dashdot)
  • with_labels: 节点是否带标签(默认为True)
  • font_size: 节点标签字体大小 (默认为12)
  • font_color: 节点标签字体颜色(默认为黑色)

完全图

G = nx.complete_graph(5)
nx.draw_networkx(G)
plt.show()
相关标签: networkx