欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Redisson分布式锁源码解析

程序员文章站 2024-02-23 12:59:04
redisson锁继承implements reentrant lock,所以具备 reentrant lock 锁中的一些特性:超时,重试,可中断等。加上redisson...

redisson锁继承implements reentrant lock,所以具备 reentrant lock 锁中的一些特性:超时,重试,可中断等。加上redisson中redis具备分布式的特性,所以非常适合用来做java中的分布式锁。 下面我们对其加锁、解锁过程中的源码细节进行一一分析。

锁的接口定义了一下方法:

Redisson分布式锁源码解析

分布式锁当中加锁,我们常用的加锁接口:

boolean trylock(long waittime, long leasetime, timeunit unit) throws interruptedexception;

下面我们来看一下方法的具体实现:

public boolean trylock(long waittime, long leasetime, timeunit unit) throws interruptedexception {
  long time = unit.tomillis(waittime);
  long current = system.currenttimemillis();
  final long threadid = thread.currentthread().getid();
  long ttl = tryacquire(leasetime, unit, threadid);
  // lock acquired
  if (ttl == null) {
   return true;
  }
  
  time -= (system.currenttimemillis() - current);
  if (time <= 0) {
   acquirefailed(threadid);
   return false;
  }
  
  current = system.currenttimemillis();
  final rfuture subscribefuture = subscribe(threadid);
  if (!await(subscribefuture, time, timeunit.milliseconds)) {
   if (!subscribefuture.cancel(false)) {
    subscribefuture.addlistener(new futurelistener() {
     @override
     public void operationcomplete(future future) throws exception {
      if (subscribefuture.issuccess()) {
       unsubscribe(subscribefuture, threadid);
      }
     }
    });
   }
   acquirefailed(threadid);
   return false;
  }

  try {
   time -= (system.currenttimemillis() - current);
   if (time <= 0) {
    acquirefailed(threadid);
    return false;
   }
  
   while (true) {
    long currenttime = system.currenttimemillis();
    ttl = tryacquire(leasetime, unit, threadid);
    // lock acquired
    if (ttl == null) {
     return true;
    }

    time -= (system.currenttimemillis() - currenttime);
    if (time = 0 && ttl < time) {
     getentry(threadid).getlatch().tryacquire(ttl, timeunit.milliseconds);
    } else {
     getentry(threadid).getlatch().tryacquire(time, timeunit.milliseconds);
    }

    time -= (system.currenttimemillis() - currenttime);
    if (time <= 0) {
     acquirefailed(threadid);
     return false;
    }
   }
  } finally {
   unsubscribe(subscribefuture, threadid);
  }
//  return get(trylockasync(waittime, leasetime, unit));
 }

首先我们看到调用tryacquire尝试获取锁,在这里是否能获取到锁,是根据锁名称的过期时间ttl来判定的(ttl

下面我们接着看一下tryacquire的实现:

private long tryacquire(long leasetime, timeunit unit, long threadid) {
 return get(tryacquireasync(leasetime, unit, threadid));
}

可以看到真正获取锁的操作经过一层get操作里面执行的,这里为何要这么操作,本人也不是太理解,如有理解错误,欢迎指正。

get 是由commandasyncexecutor(一个线程executor)封装的一个executor

设置一个单线程的同步控制器countdownlatch,用于控制单个线程的中断信息。个人理解经过中间的这么一步:主要是为了支持线程可中断操作。

public v get(rfuture future) {
 if (!future.isdone()) {
  final countdownlatch l = new countdownlatch(1);
  future.addlistener(new futurelistener() {
   @override
   public void operationcomplete(future future) throws exception {
    l.countdown();
   }
  });
  
  boolean interrupted = false;
  while (!future.isdone()) {
   try {
    l.await();
   } catch (interruptedexception e) {
    interrupted = true;
   }
  }
  
  if (interrupted) {
   thread.currentthread().interrupt();
  }
 }

 // commented out due to blocking issues up to 200 ms per minute for each thread:由于每个线程的阻塞问题,每分钟高达200毫秒
 // future.awaituninterruptibly();
 if (future.issuccess()) {
  return future.getnow();
 }

 throw convertexception(future);
}

我们进一步往下看:

private rfuture tryacquireasync(long leasetime, timeunit unit, final long threadid) {
 if (leasetime != -1) {
  return trylockinnerasync(leasetime, unit, threadid, rediscommands.eval_long);
 }
 rfuture ttlremainingfuture = trylockinnerasync(commandexecutor.getconnectionmanager().getcfg().getlockwatchdogtimeout(), timeunit.milliseconds, threadid, rediscommands.eval_long);
 ttlremainingfuture.addlistener(new futurelistener() {
  @override
  public void operationcomplete(future future) throws exception {
   if (!future.issuccess()) {
    return;
   }

   long ttlremaining = future.getnow();
   // lock acquired
   if (ttlremaining == null) {
    scheduleexpirationrenewal(threadid);
   }
  }
 });
 return ttlremainingfuture;
}

首先判断锁是否有超时时间,有过期时间的话,会在后面获取锁的时候设置进去。没有过期时间的话,则会用默认的

private long lockwatchdogtimeout = 30 * 1000;

下面我们在进一步往下分析真正获取锁的操作:

rfuture trylockinnerasync(long leasetime, timeunit unit, long threadid, redisstrictcommand command) {
 internallockleasetime = unit.tomillis(leasetime);

 return commandexecutor.evalwriteasync(getname(), longcodec.instance, command,
    "if (redis.call('exists', keys[1]) == 0) then " +
     "redis.call('hset', keys[1], argv[2], 1); " +
     "redis.call('pexpire', keys[1], argv[1]); " +
     "return nil; " +
    "end; " +
    "if (redis.call('hexists', keys[1], argv[2]) == 1) then " +
     "redis.call('hincrby', keys[1], argv[2], 1); " +
     "redis.call('pexpire', keys[1], argv[1]); " +
     "return nil; " +
    "end; " +
    "return redis.call('pttl', keys[1]);",
    collections.singletonlist(getname()), internallockleasetime, getlockname(threadid));
}

我把里面的重点信息做了以下三点总结:

1:真正执行的是一段具有原子性的lua脚本,并且最终也是由commandasynexecutor去执行。

2:锁真正持久化到redis时,用的hash类型key field value

3:获取锁的三个参数:getname()是逻辑锁名称,例如:分布式锁要锁住的methodname+params;internallockleasetime是毫秒单位的锁过期时间;getlockname则是锁对应的线程级别的名称,因为支持相同线程可重入,不同线程不可重入,所以这里的锁的生成方式是:uuid+":"threadid。有的同学可能会问,这样不是很缜密:不同的jvm可能会生成相同的threadid,所以redission这里加了一个区分度很高的uuid;

lua脚本中的执行分为以下三步:

1:exists检查redis中是否存在锁名称;如果不存在,则获取成功;同时把逻辑锁名称keys[1],线程级别的锁名称[argv[2],value=1,设置到redis。并设置逻辑锁名称的过期时间argv[2],返回;

2:如果检查到存在keys[1],[argv[2],则说明获取成功,此时会自增对应的value值,记录重入次数;并更新锁的过期时间

3:key不存,直接返回key的剩余过期时间(-2)