欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Matplotlib.pyplot库

程序员文章站 2022-03-19 15:57:16
...

1、pyplot饼状图的绘制 plt.pie()
推荐阅读:
matplotlib 知识点11:绘制饼图(pie 函数精讲)

#plt.pie() 饼图
#import matplotlib.pyplot as plt
#labels='Frogs','Hogs','Dogs','Logs'
#sizes=[15,30,45,10]
#explode=(0,0.2,0,0)
#plt.pie(sizes,explode=explode,labels=labels,autopct='%1.1f%%',shadow=False,startangle=90)
#plt.show()
#变式
import matplotlib.pyplot as plt
labels='Frogs','Hogs','Dogs','Logs'
sizes=[15,30,45,10]
explode=(0,0.2,0,0)
colors = ['r','g','y','b']
#plt.pie(sizes,explode=explode,labels=labels,autopct='%1.1f%%',shadow=False,startangle=90,colors=colors)
#plt.pie(sizes,explode=explode,labels=labels,autopct='%1.1f%%',shadow=True,startangle=90)
#plt.pie(sizes,explode=explode,labels=labels,autopct='%1.1f%%',shadow=False,startangle=90,labeldistance=0.7)
plt.pie(sizes,explode=explode,labels=labels,autopct='%1.1f%%')
plt.legend(loc='upper right')
plt.axis('equal')
plt.show()

2、pyplot直方图的绘制 plt.hist()
recommand
matplotlib可视化篇hist()–直方图

#import numpy as np
#import matplotlib.pyplot as plt
#np.random.seed(0)
#mu,sigma=100,20  #均值和方差
#a=np.random.normal(mu,sigma,size=100)
#plt.hist(a,20,normed=1,histtype='stepfilled',facecolor='b',alpha=0.75)
#plt.title('HISTOGRAM')
#plt.show()
#变式
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)
mu,sigma=100,20  #均值和方差
a=np.random.normal(mu,sigma,size=100)
#plt.hist(a,20,normed=1,histtype='bar',facecolor='y',alpha=0.5)
plt.hist(a,20,normed=1,histtype='bar',facecolor='y',align='left')
plt.title('HISTOGRAM')
plt.show()

3、pyplot极坐标图的绘制
面向对象绘制极坐标
emmm,这个列子用的是plt.bar()的参数,产生随机数绘图,重点是理解吧

import numpy as np
import matplotlib.pyplot as plt

N=10
theta=np.linspace(0.0,2*np.pi,N,endpoint=False)
radii=10*np.random.rand(N)
width=np.pi/4*np.random.rand(N)

ax=plt.subplot(111,projection='polar')
bars=plt.bar(theta,radii,width=width,bottom=0.0)

for r,bar in zip(radii,bars):
    bar.set_facecolor(plt.cm.viridis(r/10.))
    bar.set_alpha(0.5)
plt.show()

radii和width分别对应plt.bar()中的height和width
zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表
4、pyplot散点图的绘制

import numpy as np
import matplotlib.pyplot as plt
fig,ax=plt.subplots()
ax.plot(10*np.random.randn(100),10*np.random.randn(100),'o')
ax.set_title('simple scatter')
plt.show()