欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

java实现哈弗曼编码与反编码实例分享(哈弗曼算法)

程序员文章站 2024-02-14 16:23:16
复制代码 代码如下://哈弗曼编码的实现类public class hffmancoding {    private int charsan...

复制代码 代码如下:

//哈弗曼编码的实现类
public class hffmancoding {
    private int charsandweight[][];// [][0]是 字符,[][1]存放的是字符的权值(次数)
    private int hfmcoding[][];// 存放哈弗曼树
    private int i = 0;// 循环变量
    private string hcs[];
    public hffmancoding(int[][] chars) {
        // todo 构造方法
        charsandweight = new int[chars.length][2];
        charsandweight = chars;
        hfmcoding = new int[2 * chars.length - 1][4];// 为哈弗曼树分配空间
    }
    // 哈弗曼树的实现
    public void coding() {
        int n = charsandweight.length;
        if (n == 0)
            return;
        int m = 2 * n - 1;
        // 初始化哈弗曼树
        for (i = 0; i < n; i++) {
            hfmcoding[i][0] = charsandweight[i][1];// 初始化哈弗曼树的权值
            hfmcoding[i][1] = 0;// 初始化哈弗曼树的根节点
            hfmcoding[i][2] = 0;// 初始化哈弗曼树的左孩子
            hfmcoding[i][3] = 0;// 初始化哈弗曼树的右孩子
        }
        for (i = n; i < m; i++) {
            hfmcoding[i][0] = 0;// 初始化哈弗曼树的权值
            hfmcoding[i][1] = 0;// 初始化哈弗曼树的根节点
            hfmcoding[i][2] = 0;// 初始化哈弗曼树的左孩子
            hfmcoding[i][3] = 0;// 初始化哈弗曼树的右孩子
        }
        // 构建哈弗曼树
        for (i = n; i < m; i++) {
            int s1[] = select(i);// 在哈弗曼树中查找双亲为零的 weight最小的节点
            hfmcoding[s1[0]][1] = i;// 为哈弗曼树最小值付双亲
            hfmcoding[s1[1]][1] = i;
            hfmcoding[i][2] = s1[0];// 新节点的左孩子
            hfmcoding[i][3] = s1[1];// 新节点的右孩子
            hfmcoding[i][0] = hfmcoding[s1[0]][0] + hfmcoding[s1[1]][0];// 新节点的权值是左右孩子的权值之和
        }
    }
    // 查找双亲为零的 weight最小的节点
    private int[] select(int w) {
        // todo auto-generated method stub
        int s[] = { -1, -1 }, j = 0;// s1 最小权值且双亲为零的节点的序号 , i 是循环变量
        int min1 = 32767, min2 = 32767;
        for (j = 0; j < w; j++) {
            if (hfmcoding[j][1] == 0) {// 只在尚未构造二叉树的结点中查找(双亲为零的节点)
                if (hfmcoding[j][0] < min1) {
                    min2 = min1;
                    s[1] = s[0];
                    min1 = hfmcoding[j][0];
                    s[0] = j;
                } else if (hfmcoding[j][0] < min2) {
                    min2 = hfmcoding[j][0];
                    s[1] = j;
                }
            }
        }
        return s;
    }
    public string[] createhcode() {// 根据哈夫曼树求哈夫曼编码
        int n = charsandweight.length;
        int i, f, c;
        string hcodestring = "";
        hcs = new string[n];
        for (i = 0; i < n; i++) {// 根据哈夫曼树求哈夫曼编码
            c = i;
            hcodestring = "";
            f = hfmcoding[i][1]; // f 哈弗曼树的根节点
            while (f != 0) {// 循序直到树根结点
                if (hfmcoding[f][2] == c) {// 处理左孩子结点
                    hcodestring += "0";
                } else {
                    hcodestring += "1";
                }
                c = f;
                f = hfmcoding[f][1];
            }
            hcs[i] = new string(new stringbuffer(hcodestring).reverse());
        }
        return hcs;
    }
    public string show(string s) {// 对字符串显示编码
        string textstring = "";
        char c[];
        int k = -1;
        c = new char[s.length()];
        c = s.tochararray();// 将字符串转化为字符数组
        for (int i = 0; i < c.length; i++) {
            k = c[i];
            for (int j = 0; j < charsandweight.length; j++)
                if (k == charsandweight[j][0])
                    textstring += hcs[j];
        }
        return textstring;
    }
    // 哈弗曼编码反编译
    public string recoding(string s) {
        string text = "";// 存放反编译后的字符
        int k = 0, m = hfmcoding.length - 1;// 从根节点开始查询
        char c[];
        c = new char[s.length()];
        c = s.tochararray();
        k = m;
        for (int i = 0; i < c.length; i++) {
            if (c[i] == '0') {
                k = hfmcoding[k][2];// k的值为根节点左孩子的序号
                if (hfmcoding[k][2] == 0 && hfmcoding[k][3] == 0)// 判断是不是叶子节点,条件(左右孩子都为零)
                {
                    text += (char) charsandweight[k][0];
                    k = m;
                }
            }
            if (c[i] == '1') {
                k = hfmcoding[k][3];// k的值为根节点右孩子的序号
                if (hfmcoding[k][2] == 0 && hfmcoding[k][3] == 0)// 判断是不是叶子节点,条件(左右孩子都为零)
                {
                    text += (char) charsandweight[k][0];
                    k = m;
                }
            }
        }
        return text;
    }
}