【leetcode.347】前 K 个高频元素
一、题目描述
给定一个非空的整数数组,返回其中出现频率前 k 高的元素。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
示例 2:输入: nums = [1], k = 1
输出: [1]
提示:
你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
你的算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。
题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的。
你可以按任意顺序返回答案。
二、思路
首先,需要使用map来建立元素与其频率的映射关系,接下来就是怎么去按照频率对这些元素进行排序。
常见的排序方法的时间复杂度如下,这里我们使用堆排序。
使用大小为k的小顶堆,则堆顶元素为拥有最小频率的元素。
遍历map,key为元素,value为其出现的次数
如果堆内元素个数小于k,则将此元素直接插入堆中
如果堆内元素等于k,则比较堆顶元素与新元素的出现次数。如果新元素的出现次数多,则先将堆顶元素出堆,再将新元素插入堆中。
最后,将堆中所有的元素直接存入结果数组即可。
时间复杂度:因为需要遍历map,时间复杂度为O(n)。且在每一次的遍历中,元素在k容量的堆中比较的平均次数为logk,所以整个时间复杂度为O(nlogk)。k<=n,因此满足题意。
空间复杂度:使用了一个map,需要存储最多n个entry。也使用了一个堆,容量为k。所以,总的空间复杂度为O(n)。
代码实现:
public int[] topKFrequent(int[] nums, int k) {
//建立数字与其频率的映射关系
Map<Integer, Integer> map = new HashMap<>();
for (int num : nums) {
map.put(num, map.getOrDefault(num, 0) + 1);
}
//构造小顶堆
Queue<Integer> queue = new PriorityQueue<>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return map.get(o1) - map.get(o2);
}
});
for (Map.Entry<Integer, Integer> entry : map.entrySet()) {
//堆内元素数量不足k,则直接插入
if (queue.size() < k) {
queue.offer(entry.getKey());
} else {
//判断堆顶元素与新元素的频率
int time = map.get(queue.peek());
if (time < map.get(entry.getKey())) {
//如果堆顶元素的评率小于新元素的频率,则将堆顶元素出堆,并将新元素入堆
queue.poll();
queue.offer(entry.getKey());
}
}
}
int[] result = new int[k];
int index = 0;
while (!queue.isEmpty()) {
result[index++] = queue.poll();
}
return result;
}
提交答案:
上一篇: 后端系统开发之面试和工作中的map
下一篇: 【U3D/Shader】07.透明效果
推荐阅读
-
【leetcode.347】前 K 个高频元素
-
python数组中的第K个最大元素(快排与堆排)
-
【LeeCode 中等 堆 python3】 215. 数组中的第K个最大元素
-
使用jquery prev()方法教程找到同级的前一个元素
-
leadcode的Hot100系列--347. 前 K 个高频元素--hash表+直接选择排序
-
python数组中的第K个最大元素(快排与堆排)
-
第一行包含一个正整数n,表示老师给出的序列有n个数,接下来有n行,每行一个正整数k,为序列中每一个元素的值。(1 ≤ n ≤ 105,1 ≤ k ≤ n) 输出一行,为去重排序后的序列
-
C++实现LeetCode(692.前K个高频词)
-
C++实现LeetCode(347.前K个高频元素)
-
剑指offer62:二叉搜索树的第k个结点,二叉搜索树【左边的元素小于根,右边的元素大于根】