python Plot 画图用法
程序员文章站
2022-03-19 15:01:40
...
以下内容全部转载 粘贴复制于:CS青雀,重附连接:https://blog.csdn.net/ztf312/article/details/49933497
仅作自行查阅方便只用!!
图的存在,让数据变得形象化。无论多么复杂的东西,都是简单的组合。
plot画图时可以设定线条参数。包括:颜色、线型、标记风格。
1)控制颜色
颜色之间的对应关系为
b---blue c---cyan g---green k----black
m---magenta r---red w---white y----yellow
有三种表示颜色的方式:
a:用全名 b:16进制如:#FF00FF c:RGB或RGBA元组(1,0,1,1) d:灰度强度如:‘0.7’
2)控制线型
符号和线型之间的对应关系
- 实线
-- 短线
-. 短点相间线
: 虚点线
>>>import matplotlib
>>>from pylab import *
>>>help(plot)
Help on function plot in module matplotlib.pyplot:
plot(*args, **kwargs)
Plot lines and/or markers to the
:class:`~matplotlib.axes.Axes`. *args* is a variable length
argument, allowing for multiple *x*, *y* pairs with an
optional format string. For example, each of the following is
legal::
plot(x, y) # plot x and y using default line style and color
plot(x, y, 'bo') # plot x and y using blue circle markers
plot(y) # plot y using x as index array 0..N-1
plot(y, 'r+') # ditto, but with red plusses
If *x* and/or *y* is 2-dimensional, then the corresponding columns
will be plotted.
An arbitrary number of *x*, *y*, *fmt* groups can be
specified, as in::
a.plot(x1, y1, 'g^', x2, y2, 'g-')
Return value is a list of lines that were added.
The following format string characters are accepted to control
the line style or marker:
================ ===============================
character description
================ ===============================
``'-'`` solid line style
``'--'`` dashed line style
``'-.'`` dash-dot line style
``':'`` dotted line style
``'.'`` point marker
``','`` pixel marker
``'o'`` circle marker
``'v'`` triangle_down marker
``'^'`` triangle_up marker
``'<'`` triangle_left marker
``'>'`` triangle_right marker
``'1'`` tri_down marker
``'2'`` tri_up marker
``'3'`` tri_left marker
``'4'`` tri_right marker
``'s'`` square marker
``'p'`` pentagon marker
``'*'`` star marker
``'h'`` hexagon1 marker
``'H'`` hexagon2 marker
``'+'`` plus marker
``'x'`` x marker
``'D'`` diamond marker
``'d'`` thin_diamond marker
``'|'`` vline marker
``'_'`` hline marker
================ ===============================
The following color abbreviations are supported:
========== ========
character color
========== ========
'b' blue
'g' green
'r' red
'c' cyan
'm' magenta
'y' yellow
'k' black
'w' white
========== ========
In addition, you can specify colors in many weird and
wonderful ways, including full names (``'green'``), hex
strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or
grayscale intensities as a string (``'0.8'``). Of these, the
string specifications can be used in place of a ``fmt`` group,
but the tuple forms can be used only as ``kwargs``.
Line styles and colors are combined in a single format string, as in
``'bo'`` for blue circles.
The *kwargs* can be used to set line properties (any property that has
a ``set_*`` method). You can use this to set a line label (for auto
legends), linewidth, anitialising, marker face color, etc. Here is an
example::
plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
plot([1,2,3], [1,4,9], 'rs', label='line 2')
axis([0, 4, 0, 10])
legend()
If you make multiple lines with one plot command, the kwargs
apply to all those lines, e.g.::
plot(x1, y1, x2, y2, antialised=False)
Neither line will be antialiased.
You do not need to use format strings, which are just
abbreviations. All of the line properties can be controlled
by keyword arguments. For example, you can set the color,
marker, linestyle, and markercolor with::
plot(x, y, color='green', linestyle='dashed', marker='o',
markerfacecolor='blue', markersize=12). See
:class:`~matplotlib.lines.Line2D` for details.
The kwargs are :class:`~matplotlib.lines.Line2D` properties:
agg_filter: unknown
alpha: float (0.0 transparent through 1.0 opaque)
animated: [True | False]
antialiased or aa: [True | False]
axes: an :class:`~matplotlib.axes.Axes` instance
clip_box: a :class:`matplotlib.transforms.Bbox` instance
clip_on: [True | False]
clip_path: [ (:class:`~matplotlib.path.Path`, :class:`~matplotlib.transforms.Transform`) | :class:`~matplotlib.patches.Patch` | None ]
color or c: any matplotlib color
contains: a callable function
dash_capstyle: ['butt' | 'round' | 'projecting']
dash_joinstyle: ['miter' | 'round' | 'bevel']
dashes: sequence of on/off ink in points
data: 2D array (rows are x, y) or two 1D arrays
drawstyle: [ 'default' | 'steps' | 'steps-pre' | 'steps-mid' | 'steps-post' ]
figure: a :class:`matplotlib.figure.Figure` instance
fillstyle: ['full' | 'left' | 'right' | 'bottom' | 'top']
gid: an id string
label: any string
linestyle or ls: [ ``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'None'`` | ``' '`` | ``''`` ] and any drawstyle in combination with a linestyle, e.g. ``'steps--'``.
linewidth or lw: float value in points
lod: [True | False]
marker: [ ``7`` | ``4`` | ``5`` | ``6`` | ``'o'`` | ``'D'`` | ``'h'`` | ``'H'`` | ``'_'`` | ``''`` | ``None`` | ``'None'`` | ``' '`` | ``'8'`` | ``'p'`` | ``','`` | ``'+'`` | ``'.'`` | ``'s'`` | ``'*'`` | ``'d'`` | ``3`` | ``0`` | ``1`` | ``2`` | ``'1'`` | ``'3'`` | ``'4'`` | ``'2'`` | ``'v'`` | ``'<'`` | ``'>'`` | ``'^'`` | ``'|'`` | ``'x'`` | ``'$...$'`` | *tuple* | *Nx2 array* ]
markeredgecolor or mec: any matplotlib color
markeredgewidth or mew: float value in points
markerfacecolor or mfc: any matplotlib color
markerfacecoloralt or mfcalt: any matplotlib color
markersize or ms: float
markevery: None | integer | (startind, stride)
picker: float distance in points or callable pick function ``fn(artist, event)``
pickradius: float distance in points
rasterized: [True | False | None]
snap: unknown
solid_capstyle: ['butt' | 'round' | 'projecting']
solid_joinstyle: ['miter' | 'round' | 'bevel']
transform: a :class:`matplotlib.transforms.Transform` instance
url: a url string
visible: [True | False]
xdata: 1D array
ydata: 1D array
zorder: any number
kwargs *scalex* and *scaley*, if defined, are passed on to
:meth:`~matplotlib.axes.Axes.autoscale_view` to determine
whether the *x* and *y* axes are autoscaled; the default is
*True*.
Additional kwargs: hold = [True|False] overrides default hold state
自用小代码:
from matplotlib import pyplot as plt
filename = './loss.txt'
step, v_loss, gan = [], [], []
j = 0
i = 1
# 相比open(),with open()不用手动调用close()方法
with open(filename, 'r') as f:
# 将txt中的数据逐行存到列表lines里 lines的每一个元素对应于txt中的一行。然后将每个元素中的不同信息提取出来
lines = f.readlines()
# i变量,由于这个txt存储时有空行,所以增只读偶数行,主要看txt文件的格式,一般不需要
# j用于判断读了多少条,step为画图的X轴
for line in lines:
if i > 1600:
step.append(30 * i)
v_loss.append(float(line))
gan.append(float(0.2))
i = i + 1
else:
i = i + 1
# temp = line.split('loss ')
# t = temp[1].split(',')
# step.append(30*j)
# j = j + 1
# v_loss.append(float(line))
# i = i + 1
fig = plt.figure(figsize=(10, 5)) # 创建绘图窗口,并设置窗口大小
# 画第一张图
ax1 = fig.add_subplot(111) # 将画面分割为2行1列选第一个
ax1.plot(step, v_loss, 'blue', label='Loss', linewidth=1) # 画dis-loss的值,颜色红
ax1.legend(loc='upper right') # 绘制图例,plot()中的label值
ax1.set_xlabel('step') # 设置X轴名称
ax1.set_ylabel('Training loss') # 设置Y轴名称
# ax1.set_title('Training Loss for U-Net')
# plt.show()
# 画第二张图
# ax2 = fig.add_subplot(212) # 将画面分割为2行1列选第二个
# ax2.plot(step, gan, 'blue', label='gan') # 画gan-loss的值,颜色蓝
# ax2.legend(loc='upper right') # loc为图例位置,设置在右上方,(右下方为lower right)
# ax2.set_xlabel('step')
# ax2.set_ylabel('Generator-loss')
# plt.show() # 显示绘制的图
# plt.figure()
# plt.plot(step, dis, 'red', label='dis')
plt.plot(step, gan, 'red', label='y=0.2', linewidth=3, linestyle="--")
plt.legend()
plt.show()
上一篇: Windows获取窗口列表
下一篇: Matlab 画图(plot),坐标