欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

数据可视化

程序员文章站 2024-02-12 18:12:46
...

传送门:https://www.bilibili.com/video/av16001891/?p=17

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def add_layer(inputs,input_size,output_size,activate_function=None):
    Weights=tf.Variable(tf.random_normal([input_size,output_size]))
    biases=tf.Variable(tf.zeros([1,output_size])+0.1)
    Wx_plus_b=tf.matmul(inputs,Weights)+biases
    if activate_function is None:
        out=Wx_plus_b
    else:
        out=activate_function(Wx_plus_b)
    return out
x_data=np.linspace(-1,1,300)[:,np.newaxis]
noise=np.random.normal(0,0.05,x_data.shape)
y_data=np.square(x_data)-0.5+noise

xs=tf.placeholder(tf.float32,[None,1])
ys=tf.placeholder(tf.float32,[None,1])
l1=add_layer(xs,1,10,activate_function=tf.nn.relu)
prediction=add_layer(l1,10,1,activate_function=None)

loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))

train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init=tf.initialize_all_variables()
sess=tf.Session()
sess.run(init)
fig=plt.figure()#生成图片框
ax=fig.add_subplot(1,1,1)#长宽比例,所在位置
ax.scatter(x_data,y_data)
plt.ion()#连续画图,因为show()之后会停止程序所以要加
print("prediction",prediction)
plt.show()
for i in range(1000):
    sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
    if i%50==0:
       # print(sess.run(prediction,feed_dict={xs:x_data,ys:y_data}))
        #print(x_data.shape,prediction.shape)
        try:
            ax.lines.remove(lines[0])
        except Exception:
           pass

        prediction_value=sess.run(prediction,feed_dict={xs:x_data,ys:y_data})
        lines=ax.plot(x_data,prediction_value,'r-',lw=5)
        plt.pause(0.2)
plt.ioff()
plt.show()