数据可视化
程序员文章站
2024-02-12 18:12:46
...
传送门:https://www.bilibili.com/video/av16001891/?p=17
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def add_layer(inputs,input_size,output_size,activate_function=None):
Weights=tf.Variable(tf.random_normal([input_size,output_size]))
biases=tf.Variable(tf.zeros([1,output_size])+0.1)
Wx_plus_b=tf.matmul(inputs,Weights)+biases
if activate_function is None:
out=Wx_plus_b
else:
out=activate_function(Wx_plus_b)
return out
x_data=np.linspace(-1,1,300)[:,np.newaxis]
noise=np.random.normal(0,0.05,x_data.shape)
y_data=np.square(x_data)-0.5+noise
xs=tf.placeholder(tf.float32,[None,1])
ys=tf.placeholder(tf.float32,[None,1])
l1=add_layer(xs,1,10,activate_function=tf.nn.relu)
prediction=add_layer(l1,10,1,activate_function=None)
loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init=tf.initialize_all_variables()
sess=tf.Session()
sess.run(init)
fig=plt.figure()#生成图片框
ax=fig.add_subplot(1,1,1)#长宽比例,所在位置
ax.scatter(x_data,y_data)
plt.ion()#连续画图,因为show()之后会停止程序所以要加
print("prediction",prediction)
plt.show()
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50==0:
# print(sess.run(prediction,feed_dict={xs:x_data,ys:y_data}))
#print(x_data.shape,prediction.shape)
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value=sess.run(prediction,feed_dict={xs:x_data,ys:y_data})
lines=ax.plot(x_data,prediction_value,'r-',lw=5)
plt.pause(0.2)
plt.ioff()
plt.show()
上一篇: 数据可视化
下一篇: DataGear 表格图表常用配置示例