回溯算法
解决一个回溯问题,实际上就是一个决策树的遍历过程。你只需要思考 3 个问题:
1、路径:也就是已经做出的选择。
2、选择列表:也就是你当前可以做的选择。
3、结束条件:也就是到达决策树底层,无法再做选择的条件。
如果你不理解这三个词语的解释,没关系,我们后面会用「全排列」和「N 皇后问题」这两个经典的回溯算法问题来帮你理解这些词语是什么意思,现在你先留着印象。
代码方面,回溯算法的框架:
result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择
其核心就是 for 循环里面的递归,在递归调用之前「做选择」,在递归调用之后「撤销选择」,特别简单。
什么叫做选择和撤销选择呢,这个框架的底层原理是什么呢?下面我们就通过「全排列」这个问题来解开之前的疑惑,详细探究一下其中的奥妙!
一、全排列问题
我们在高中的时候就做过排列组合的数学题,我们也知道 n
个不重复的数,全排列共有 n! 个。
PS:为了简单清晰起见,我们这次讨论的全排列问题不包含重复的数字。
那么我们当时是怎么穷举全排列的呢?比方说给三个数 [1,2,3]
,你肯定不会无规律地乱穷举,一般是这样:
先固定第一位为 1,然后第二位可以是 2,那么第三位只能是 3;然后可以把第二位变成 3,第三位就只能是 2 了;然后就只能变化第一位,变成 2,然后再穷举后两位……
只要从根遍历这棵树,记录路径上的数字,其实就是所有的全排列。我们不妨把这棵树称为回溯算法的「决策树」。
现在,你是否理解了回溯算法的这段核心框架?
for 选择 in 选择列表:
# 做选择
将该选择从选择列表移除
路径.add(选择)
backtrack(路径, 选择列表)
# 撤销选择
路径.remove(选择)
将该选择再加入选择列表
我们只要在递归之前做出选择,在递归之后撤销刚才的选择,就能正确得到每个节点的选择列表和路径。
下面,直接看全排列代码:
List<List<Integer>> res = new LinkedList<>();
/* 主函数,输入一组不重复的数字,返回它们的全排列 */
List<List<Integer>> permute(int[] nums) {
// 记录「路径」
LinkedList<Integer> track = new LinkedList<>();
backtrack(nums, track);
return res;
}
// 路径:记录在 track 中
// 选择列表:nums 中不存在于 track 的那些元素
// 结束条件:nums 中的元素全都在 track 中出现
void backtrack(int[] nums, LinkedList<Integer> track) {
// 触发结束条件
if (track.size() == nums.length) {
res.add(new LinkedList(track));
return;
}
for (int i = 0; i < nums.length; i++) {
// 排除不合法的选择
if (track.contains(nums[i]))
continue;
// 做选择
track.add(nums[i]);
// 进入下一层决策树
backtrack(nums, track);
// 取消选择
track.removeLast();
}
}
二、N 皇后问题
这个问题很经典了,简单解释一下:给你一个 N×N 的棋盘,让你放置 N 个皇后,使得它们不能互相攻击。
PS:皇后可以攻击同一行、同一列、左上左下右上右下四个方向的任意单位。
这个问题本质上跟全排列问题差不多,决策树的每一层表示棋盘上的每一行;每个节点可以做出的选择是,在该行的任意一列放置一个皇后。
直接套用框架:
vector<vector<string>> res;
/* 输入棋盘边长 n,返回所有合法的放置 */
vector<vector<string>> solveNQueens(int n) {
// '.' 表示空,'Q' 表示皇后,初始化空棋盘。
vector<string> board(n, string(n, '.'));
backtrack(board, 0);
return res;
}
// 路径:board 中小于 row 的那些行都已经成功放置了皇后
// 选择列表:第 row 行的所有列都是放置皇后的选择
// 结束条件:row 超过 board 的最后一行
void backtrack(vector<string>& board, int row) {
// 触发结束条件
if (row == board.size()) {
res.push_back(board);
return;
}
int n = board[row].size();
for (int col = 0; col < n; col++) {
// 排除不合法选择
if (!isValid(board, row, col))
continue;
// 做选择
board[row][col] = 'Q';
// 进入下一行决策
backtrack(board, row + 1);
// 撤销选择
board[row][col] = '.';
}
}
这部分主要代码,其实跟全排列问题差不多,isValid
函数的实现也很简单:
/* 是否可以在 board[row][col] 放置皇后? */
bool isValid(vector<string>& board, int row, int col) {
int n = board.size();
// 检查列是否有皇后互相冲突
for (int i = 0; i < n; i++) {
if (board[i][col] == 'Q')
return false;
}
// 检查右上方是否有皇后互相冲突
for (int i = row - 1, j = col + 1;
i >= 0 && j < n; i--, j++) {
if (board[i][j] == 'Q')
return false;
}
// 检查左上方是否有皇后互相冲突
for (int i = row - 1, j = col - 1;
i >= 0 && j >= 0; i--, j--) {
if (board[i][j] == 'Q')
return false;
}
return true;
}
上一篇: 互联网企业网络安全架构系列之三 —— 办公网网络划分
下一篇: 破解的些许思路