欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Btree与b+tree

程序员文章站 2024-01-20 19:41:04
...

1. Btree:

  • B-tree是一种多路自平衡搜索树,它类似普通的二叉树,但是Btree允许每个节点有更多的子节点。Btree示意图如下:
    Btree与b+tree

  • B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;

  • 如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;

  • 右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题;

  • 实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的策略;

由上图可知 Btree 的一些特点:

  • 所有键值分布在整个树中
  • 任何关键字出现且只出现在一个节点中
  • 搜索有可能在非叶子节点结束
  • 在关键字全集内做一次查找,性能逼近二分查找算法

2. B+tree:

B+tree是Btree的变体,也是一种多路搜索树:

   1.其定义基本与B-树同,除了:

   2.非叶子结点的子树指针与关键字个数相同;

   3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);

   5.为所有叶子结点增加一个链指针;

   6.所有关键字都在叶子结点出现;

Btree与b+tree

  • B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+tree的特性:

   1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;

   2.不可能在非叶子结点命中;

   3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

   4.更适合文件索引系统;

btree和B+tree的区别:

  • (1)B+tree的非叶子节点不存储真正的data,而btree可以
  • (2)增加了一个链指针
  • (3)btree支持数据的延展性,B+tree支持数据的扩展性

B*Tree:

是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;
Btree与b+tree

  • B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);
  • B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;
  • B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;
  • 所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

三. B-tree与哈希索引的区别

1)B+tree的索引:

  • 是按照顺序存储的,所以,如果按照B+tree索引,可以直接返回,带顺序的数据,但这个数据只是该索引列含有的信息。因此是顺序I/O
  • 适用于: 精确匹配 、范围匹配 、最左匹配

2)Hash索引:

  • 索引列值的哈希值+数据行指针:因此找到后还需要根据指针去找数据,造成随机I/O
  • 适合: 精确匹配
  • 不适合: 模糊匹配 、范围匹配 、不能排序