欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

JAVA中的锁

程序员文章站 2024-01-09 18:25:10
...

JAVA中的锁

一、重入锁

        重入锁,也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响。在JAVA环境下 ReentrantLock 和synchronized 都是 可重入锁。这里主要来看ReentrantLock。

       ReentrantLock: 在需要进行同步的代码部分加上锁定,但不要忘记最后一定要释放锁定, 不然会造成锁永远无法释放,其他线程永远进不来的结果。

    简单使用:

public class UseReentrantLock {

	private Lock lock = new ReentrantLock();

	public void method1() {
		try {
			lock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method1..");
			Thread.sleep(1000);
			System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method1..");
			Thread.sleep(1000);
		} catch (InterruptedException e) {
			e.printStackTrace();
		} finally {

			lock.unlock();
		}
	}

	public void method2() {
		try {
			lock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "进入method2..");
			Thread.sleep(2000);
			System.out.println("当前线程:" + Thread.currentThread().getName() + "退出method2..");
			Thread.sleep(1000);
		} catch (InterruptedException e) {
			e.printStackTrace();
		} finally {

			lock.unlock();
		}
	}

	public static void main(String[] args) {

		final UseReentrantLock ur = new UseReentrantLock();
		Thread t1 = new Thread(() -> {
			ur.method1();
			ur.method2();
		}, "t1");

		t1.start();
		try {
			Thread.sleep(10);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
	}
}

    在使用synchronized的时候,如果需要多线程间进行协调工作则需要Object的wait()和notify()、notifyAll()方法配合工作。那么同样,在使用Lock的时候,可以使用一个新的等待/通知的类,他就是Condition。这个Condition一定是针对具体某一把锁的。也就是在只有锁的基础上才会产生Condition。

    使用单个Condition:

public class UseCondition {

	private Lock lock = new ReentrantLock();
	private Condition condition = lock.newCondition();

	public void method1() {
		try {
			lock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "进入等待状态..");
			Thread.sleep(3000);
			System.out.println("当前线程:" + Thread.currentThread().getName() + "释放锁..");
			condition.await(); // 类似于 wait
			System.out.println("当前线程:" + Thread.currentThread().getName() + "继续执行...");
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}

	public void method2() {
		try {
			lock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "进入..");
			Thread.sleep(3000);
			System.out.println("当前线程:" + Thread.currentThread().getName() + "发出唤醒..");
			condition.signal(); // 类似于 notify
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}

	public static void main(String[] args) {

		final UseCondition uc = new UseCondition();
		Thread t1 = new Thread(new Runnable() {
			@Override
			public void run() {
				uc.method1();
			}
		}, "t1");
		Thread t2 = new Thread(new Runnable() {
			@Override
			public void run() {
				uc.method2();
			}
		}, "t2");
		t1.start();

		try {
			Thread.sleep(1000);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
		t2.start();
	}

}

    使用多个Condition:可以通过一个Lock对象产生多个Condition进行多线程间的交互,非常的灵活。可以使得部分需要唤醒的线程唤醒,其他线程则继续等待通知

public class UseManyCondition {

	private ReentrantLock lock = new ReentrantLock();
	private Condition c1 = lock.newCondition();
	private Condition c2 = lock.newCondition();

	public void m1() {
		try {
			lock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "进入方法m1等待..");
			c1.await();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "方法m1继续..");
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}

	public void m2() {
		try {
			lock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "进入方法m2等待..");
			c1.await();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "方法m2继续..");
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}

	public void m3() {
		try {
			lock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "进入方法m3等待..");
			c2.await();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "方法m3继续..");
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}

	public void m4() {
		try {
			lock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "唤醒..");
			c1.signalAll();
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}

	public void m5() {
		try {
			lock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "唤醒..");
			c2.signal();
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}

	public static void main(String[] args) {

		final UseManyCondition umc = new UseManyCondition();
		Thread t1 = new Thread(new Runnable() {
			@Override
			public void run() {
				umc.m1();
			}
		}, "t1");
		Thread t2 = new Thread(new Runnable() {
			@Override
			public void run() {
				umc.m2();
			}
		}, "t2");
		Thread t3 = new Thread(new Runnable() {
			@Override
			public void run() {
				umc.m3();
			}
		}, "t3");
		Thread t4 = new Thread(new Runnable() {
			@Override
			public void run() {
				umc.m4();
			}
		}, "t4");
		Thread t5 = new Thread(new Runnable() {
			@Override
			public void run() {
				umc.m5();
			}
		}, "t5");

		t1.start(); // c1
		t2.start(); // c1
		t3.start(); // c2

		try {
			Thread.sleep(2000);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}

		t4.start(); // c1 signalAll
		try {
			Thread.sleep(2000);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
		t5.start(); // c2
	}
}

    支持重入:

public class TestReentrant {

	private ReentrantLock lock = new ReentrantLock();

	public void m1() {
		try {
			lock.lock();
			System.out.println("进入m1方法");
			// 调用m2方法
			m2();

		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}

	public void m2() {
		try {
			lock.lock();
			System.out.println("进入m2方法");
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			lock.unlock();
		}
	}

	public static void main(String[] args) {
		TestReentrant thc = new TestReentrant();
		thc.m1();
	}
}

二、读写锁

     ReentrantReadWriteLock,其核心就是实现读写分离的锁。在高并发访问下,尤其时读多写少的情况下,性能要远高于重入锁。synchronized、ReentrantLock,同一时间内,只能有一个线程进行访问被锁定的代码,那么读写锁则不同,其本质时分成两个锁,即读锁、写锁。在读锁下,多个线程可以并发的进行访问,但是在写锁的时候,只能一个一个的顺序访问。

public class UseReentrantReadWriteLock {

	private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
	private ReadLock readLock = rwLock.readLock();
	private WriteLock writeLock = rwLock.writeLock();

	public void read() {
		try {
			readLock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "进入...");
			Thread.sleep(3000);
			System.out.println("当前线程:" + Thread.currentThread().getName() + "退出...");
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			readLock.unlock();
		}
	}

	public void write() {
		try {
			writeLock.lock();
			System.out.println("当前线程:" + Thread.currentThread().getName() + "进入...");
			Thread.sleep(3000);
			System.out.println("当前线程:" + Thread.currentThread().getName() + "退出...");
		} catch (Exception e) {
			e.printStackTrace();
		} finally {
			writeLock.unlock();
		}
	}

	public static void main(String[] args) {

		final UseReentrantReadWriteLock urrw = new UseReentrantReadWriteLock();

		Thread t1 = new Thread(() -> {
			urrw.read();
		}, "t1");
		Thread t2 = new Thread(() -> {
			urrw.read();
		}, "t2");
		Thread t3 = new Thread(() -> {
			urrw.write();
		}, "t3");
		Thread t4 = new Thread(() -> {
			urrw.write();
		}, "t4");

		// t1.start(); // R
		// t2.start(); // R

		t1.start(); // R
		t3.start(); // W

		// t3.start();// W
		// t4.start();// W

	}
}

三、乐观锁

        总是认为不会产生并发问题,每次去取数据的时候总认为不会有其他线程对数据进行修改,因此不会上锁,但是在更新时会判断其他线程在这之前有没有对数据进行修改,一般会使用版本号机制或CAS操作实现。

        version方式:一般是在数据表中加上一个数据版本号version字段,表示数据被修改的次数,当数据被修改时,version值会加一。当线程A要更新数据值时,在读取数据的同时也会读取version值,在提交更新时,若刚才读取到的version值为当前数据库中的version值相等时才更新,否则重试更新操作,直到更新成功。

    核心SQL语句

    update table set x=x+1, version=version+1 where id=#{id} and version=#{version};   

    CAS操作方式:即compare and swap 或者 compare and set,涉及到三个操作数,数据所在的内存值,预期值,新值。当需要更新时,判断当前内存值与之前取到的值是否相等,若相等,则用新值更新,若失败则重试,一般情况下是一个自旋操作,即不断的重试。

四、悲观锁

        总是假设最坏的情况,每次取数据时都认为其他线程会修改,所以都会加锁(读锁、写锁、行锁等),当其他线程想要访问数据时,都需要阻塞挂起。可以依靠数据库实现,如行锁、读锁和写锁等,都是在操作之前加锁,在Java中,synchronized的思想也是悲观锁。

 

转载于:https://my.oschina.net/caofanqi/blog/3005752