欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

MariaDB · 新特性 · 窗口函数

程序员文章站 2023-12-26 14:06:27
...

简介

窗口函数(Window Function)是 SQL:2013 标准中提出的,在后续标准版本的更新中也多次扩展,最新的版本是 SQL:2011 中的标准。

从某些方面来说,窗口函数与聚合函数(Aggregate Function)有些类似,他们都是对一系列的行进行聚合计算,然而不同于聚合函数的是,窗口函数的输出并不是被聚集到单独的一行。像 SUM, AVG, COUNT 这些聚合函数最终输出都是一行记录。

窗口函数可以通过计算每行周围窗口上的集合值来分析数据,例如:计算一定记录范围内、一定值域内、或者一段时间内的累计和以及移动平均值等等。之所以使用窗口这个术语,是因为对结果的处理使用了一个滑动的查询结果集范围。

大部分数据库,尤其是商业数据库都支持SQL标准中定义的部分窗口函数,但是MySQL一直没有支持这个特性。窗口函数在MySQL社区一直呼声很高,却一直没有被实现,直到 MairaDB 10.2 响应了客户的需求,实现了部分窗口函数,并且在持续完善中,我们就来简单介绍一下 MairaDB 的窗口函数。

语法

MariaDB的窗口函数查询指定使用 OVER 关键字,默认情况下,用于计算的行集合(Window,窗口)是整个数据集,并且可以用 ORDER BY 子句排序。PARTITION BY 子句可以用于将窗口缩小到特定的集合内。

使用语法:

function (expression) OVER (
  [ PARTITION BY expression_list ]
  [ ORDER BY order_list [ frame_clause ] ] ) 

function:
  A valid window function

expression_list:
  expression | column_name [, expr_list ]

order_list:
  expression | column_name [ ASC | DESC ] 
  [, ... ]

frame_clause:

例如,给出下面的原始数据:

CREATE TABLE student (name CHAR(10), test CHAR(10), score TINYINT); 

INSERT INTO student VALUES 
  ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73), 
  ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31), 
  ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88), 
  ('Tatiana', 'SQL', 87), ('Tatiana', 'Tuning', 83);

下面两个查询可以分别返回按 test 和 name 分区处理的平均数:

SELECT name, test, score, AVG(score) OVER (PARTITION BY test) 
  AS average_by_test FROM student;
+---------+--------+-------+-----------------+
| name    | test   | score | average_by_test |
+---------+--------+-------+-----------------+
| Chun    | SQL    |    75 |         65.2500 |
| Chun    | Tuning |    73 |         68.7500 |
| Esben   | SQL    |    43 |         65.2500 |
| Esben   | Tuning |    31 |         68.7500 |
| Kaolin  | SQL    |    56 |         65.2500 |
| Kaolin  | Tuning |    88 |         68.7500 |
| Tatiana | SQL    |    87 |         65.2500 |
| Tatiana | Tuning |    83 |         68.7500 |
+---------+--------+-------+-----------------+

SELECT name, test, score, AVG(score) OVER (PARTITION BY name) 
  AS average_by_name FROM student;
+---------+--------+-------+-----------------+
| name    | test   | score | average_by_name |
+---------+--------+-------+-----------------+
| Chun    | SQL    |    75 |         74.0000 |
| Chun    | Tuning |    73 |         74.0000 |
| Esben   | SQL    |    43 |         37.0000 |
| Esben   | Tuning |    31 |         37.0000 |
| Kaolin  | SQL    |    56 |         72.0000 |
| Kaolin  | Tuning |    88 |         72.0000 |
| Tatiana | SQL    |    87 |         85.0000 |
| Tatiana | Tuning |    83 |         85.0000 |
+---------+--------+-------+-----------------+

用例

RANK

描述:

RANK() 可以显示给定行的序号,从1开始,顺序以 ORDER BY 字段排序后的序列为准。

语法:

RANK() OVER (
  [ PARTITION BY partition_expression ]
  [ ORDER BY order_list ]
) 

例子

CREATE TABLE student(course VARCHAR(10), mark int, name varchar(10));

INSERT INTO student VALUES 
     ('Maths', 60, 'Thulile'),
     ('Maths', 60, 'Pritha'),
     ('Maths', 70, 'Voitto'),
     ('Biology', 60, 'Bilal'),
     ('Biology', 70, 'Roger');

SELECT RANK() OVER (PARTITION BY course ORDER BY mark) AS rank,
    DENSE_RANK() OVER (PARTITION BY course ORDER BY mark) AS dense_rank,
    ROW_NUMBER() OVER (PARTITION BY course ORDER BY mark) AS row_num,
    course, mark, name from student;
+------+------------+---------+---------+------+---------+
| rank | dense_rank | row_num | course  | mark | name    |
+------+------------+---------+---------+------+---------+
|    1 |          1 |       1 | Maths   |   60 | Thulile |
|    1 |          1 |       2 | Maths   |   60 | Pritha  |
|    3 |          2 |       3 | Maths   |   70 | Voitto  |
|    1 |          1 |       1 | Biology |   60 | Bilal   |
|    2 |          2 |       2 | Biology |   70 | Roger   |
+------+------------+---------+---------+------+---------+

CUME_DIST

描述:

CUME_DIST() 可以返回一行数据的累积分布(cumulative distribution)。计算公式如下

(number of rows <= current row) / (total rows)

语法:

CUME_DIST() OVER ( 
  [ PARTITION BY partition_expression ] 
  [ ORDER BY order_list ]
)

例子:

create table t1 (
  pk int primary key,
  a int,
  b int
);


insert into t1 values
( 1 , 0, 10),
( 2 , 0, 10),
( 3 , 1, 10),
( 4 , 1, 10),
( 8 , 2, 10),
( 5 , 2, 20),
( 6 , 2, 20),
( 7 , 2, 20),
( 9 , 4, 20),
(10 , 4, 20);

select pk, a, b,
    rank() over (order by a),
    percent_rank() over (order by a),
    cume_dist() over (order by a)
from t1;
+----+------+------+--------------------------+----------------------------------+-------------------------------+
| pk | a    | b    | rank() over (order by a) | percent_rank() over (order by a) | cume_dist() over (order by a) |
+----+------+------+--------------------------+----------------------------------+-------------------------------+
|  1 |    0 |   10 |                        1 |                     0.0000000000 |                  0.2000000000 |
|  2 |    0 |   10 |                        1 |                     0.0000000000 |                  0.2000000000 |
|  3 |    1 |   10 |                        3 |                     0.2222222222 |                  0.4000000000 |
|  4 |    1 |   10 |                        3 |                     0.2222222222 |                  0.4000000000 |
|  5 |    2 |   20 |                        5 |                     0.4444444444 |                  0.8000000000 |
|  6 |    2 |   20 |                        5 |                     0.4444444444 |                  0.8000000000 |
|  7 |    2 |   20 |                        5 |                     0.4444444444 |                  0.8000000000 |
|  8 |    2 |   10 |                        5 |                     0.4444444444 |                  0.8000000000 |
|  9 |    4 |   20 |                        9 |                     0.8888888889 |                  1.0000000000 |
| 10 |    4 |   20 |                        9 |                     0.8888888889 |                  1.0000000000 |
+----+------+------+--------------------------+----------------------------------+-------------------------------+

select pk, a, b,
       percent_rank() over (order by pk),
       cume_dist() over (order by pk)
from t1 order by pk;
+----+------+------+-----------------------------------+--------------------------------+
| pk | a    | b    | percent_rank() over (order by pk) | cume_dist() over (order by pk) |
+----+------+------+-----------------------------------+--------------------------------+
|  1 |    0 |   10 |                      0.0000000000 |                   0.1000000000 |
|  2 |    0 |   10 |                      0.1111111111 |                   0.2000000000 |
|  3 |    1 |   10 |                      0.2222222222 |                   0.3000000000 |
|  4 |    1 |   10 |                      0.3333333333 |                   0.4000000000 |
|  5 |    2 |   20 |                      0.4444444444 |                   0.5000000000 |
|  6 |    2 |   20 |                      0.5555555556 |                   0.6000000000 |
|  7 |    2 |   20 |                      0.6666666667 |                   0.7000000000 |
|  8 |    2 |   10 |                      0.7777777778 |                   0.8000000000 |
|  9 |    4 |   20 |                      0.8888888889 |                   0.9000000000 |
| 10 |    4 |   20 |                      1.0000000000 |                   1.0000000000 |
+----+------+------+-----------------------------------+--------------------------------+

select pk, a, b,
        percent_rank() over (partition by a order by a),
        cume_dist() over (partition by a order by a)
from t1;
+----+------+------+-------------------------------------------------+----------------------------------------------+
| pk | a    | b    | percent_rank() over (partition by a order by a) | cume_dist() over (partition by a order by a) |
+----+------+------+-------------------------------------------------+----------------------------------------------+
|  1 |    0 |   10 |                                    0.0000000000 |                                 1.0000000000 |
|  2 |    0 |   10 |                                    0.0000000000 |                                 1.0000000000 |
|  3 |    1 |   10 |                                    0.0000000000 |                                 1.0000000000 |
|  4 |    1 |   10 |                                    0.0000000000 |                                 1.0000000000 |
|  5 |    2 |   20 |                                    0.0000000000 |                                 1.0000000000 |
|  6 |    2 |   20 |                                    0.0000000000 |                                 1.0000000000 |
|  7 |    2 |   20 |                                    0.0000000000 |                                 1.0000000000 |
|  8 |    2 |   10 |                                    0.0000000000 |                                 1.0000000000 |
|  9 |    4 |   20 |                                    0.0000000000 |                                 1.0000000000 |
| 10 |    4 |   20 |                                    0.0000000000 |                                 1.0000000000 |
+----+------+------+-------------------------------------------------+----------------------------------------------+

总结

  • 支持 ROWS 和 RANGE类型的Frame
    • 各种类型的Frame界定都支持,包括 RANGE PRECEDING | FOLLOWING n个Frame范围(不同于PostgreSQL 和 SQL Server)
    • RANGE类型的Frame 还不支持 DATE[TIME] 数据类型和四则运算,但MDEV-9727正在进行开发
  • 还不支持 GROUPS类型的Frame(但好像还没有流行的数据库有支持这玩意的)
  • 不支持禁用Frame(好像也没其他数据库支持)
  • 不支持显式的 NULLS FIRST 和 NULLS LAST
  • 不支持窗口函数嵌套处理(就是VALUE_OF(expr AT row_marker [, default_value) 这种语法)
  • 下面这些窗口函数都支持:
    • “Streamable(流式)” 窗口函数:ROW_NUMBER, RANK, DENSE_RANK
    • 一旦分区中的行数知道后,就可以流式处理的窗口函数:PERCENT_RANK, CUME_DIST, NTILE
  • 目前支持窗口函数的聚合函数有: COUNT, SUM, AVG, BIT_OR, BIT_AND, BIT_XOR
  • 包含 DISTINCT 子句的聚合函数不支持作为窗口函数

大家可以在这里查看具体支持哪些函数以及未来新增了哪些函数

上一篇:

下一篇: