欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

可视化好助手Tensorboard

程序员文章站 2022-03-17 14:45:09
...

Tensorboard 可视化好助手1

注意: 本节内容会用到浏览器, 而且与 tensorboard 兼容的浏览器是 “Google Chrome”. 使用其他的浏览器不保证所有内容都能正常显示.

学会用 Tensorflow 自带的 tensorboard 去可视化我们所建造出来的神经网络是一个很好的学习理解方式. 用最直观的流程图告诉你你的神经网络是长怎样,有助于你发现编程中间的问题和疑问.

效果

好,我们开始吧。

这次我们会介绍如何可视化神经网络。因为很多时候我们都是做好了一个神经网络,但是没有一个图像可以展示给大家看。这一节会介绍一个TensorFlow的可视化工具 — tensorboard :) 通过使用这个工具我们可以很直观的看到整个神经网络的结构、框架。 以前几节的代码为例:相关代码 通过tensorflow的工具大致可以看到,今天要显示的神经网络差不多是这样子的
可视化好助手Tensorboard
同时我们也可以展开看每个layer中的一些具体的结构:
可视化好助手Tensorboard
好,通过阅读代码和之前的图片我们大概知道了此处是有一个输入层(inputs),一个隐含层(layer),还有一个输出层(output) 现在可以看看如何进行可视化.

搭建图纸

首先从 Input 开始:

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])

对于input我们进行如下修改: 首先,可以为xs指定名称为x_in:

xs= tf.placeholder(tf.float32, [None, 1],name='x_in')

然后再次对ys指定名称y_in:

ys= tf.placeholder(tf.loat32, [None, 1],name='y_in')

这里指定的名称将来会在可视化的图层inputs中显示出来

使用with tf.name_scope(‘inputs’)可以将xs和ys包含进来,形成一个大的图层,图层的名字就是with tf.name_scope()方法里的参数。

with tf.name_scope('inputs'):
    # define placeholder for inputs to network
    xs = tf.placeholder(tf.float32, [None, 1])
    ys = tf.placeholder(tf.float32, [None, 1])

接下来开始编辑layer , 请看编辑前的程序片段 :

def add_layer(inputs, in_size, out_size, activation_function=None):
    # add one more layer and return the output of this layer
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b, )
    return outputs

这里的名字应该叫layer, 下面是编辑后的:

def add_layer(inputs, in_size, out_size, activation_function=None):
    # add one more layer and return the output of this layer
    with tf.name_scope('layer'):
        Weights= tf.Variable(tf.random_normal([in_size, out_size]))
        # and so on...

在定义完大的框架layer之后,同时也需要定义每一个’框架‘里面的小部件:(Weights biases 和 activation function): 现在现对 Weights 定义: 定义的方法同上,可以使用tf.name.scope()方法,同时也可以在Weights中指定名称W。 即为:

 def add_layer(inputs, in_size, out_size, activation_function=None):
    #define layer name
    with tf.name_scope('layer'):
        #define weights name 
        with tf.name_scope('weights'):
            Weights= tf.Variable(tf.random_normal([in_size, out_size]),name='W')
        #and so on......

接着继续定义biases , 定义方式同上。

def add_layer(inputs, in_size, out_size, activation_function=None):
    #define layer name
    with tf.name_scope('layer'):
        #define weights name 
        with tf.name_scope('weights')
            Weights= tf.Variable(tf.random_normal([in_size, out_size]),name='W')
        # define biase
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
        # and so on....

activation_function 的话,可以暂时忽略。因为当你自己选择用 tensorflow 中的激励函数(activation function)的时候,tensorflow会默认添加名称。 最终,layer形式如下:

def add_layer(inputs, in_size, out_size, activation_function=None):
    # add one more layer and return the output of this layer
    with tf.name_scope('layer'):
        with tf.name_scope('weights'):
            Weights = tf.Variable(
            tf.random_normal([in_size, out_size]), 
            name='W')
        with tf.name_scope('biases'):
            biases = tf.Variable(
            tf.zeros([1, out_size]) + 0.1, 
            name='b')
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b = tf.add(
            tf.matmul(inputs, Weights), 
            biases)
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b, )
        return outputs

效果如下:(有没有看见刚才定义layer里面的“内部构件”呢?)
可视化好助手Tensorboard
最后编辑loss部分:将with tf.name_scope()添加在loss上方,并为它起名为loss

# the error between prediciton and real data
with tf.name_scope('loss'):
    loss = tf.reduce_mean(
    tf.reduce_sum(
    tf.square(ys - prediction),
    eduction_indices=[1]
    ))

这句话就是“绘制” loss了, 如下:
可视化好助手Tensorboard
使用with tf.name_scope()再次对train_step部分进行编辑,如下:

with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

我们需要使用 tf.summary.FileWriter() (tf.train.SummaryWriter() 这种方式已经在 tf >= 0.12 版本中摒弃) 将上面‘绘画’出的图保存到一个目录中,以方便后期在浏览器中可以浏览。 这个方法中的第二个参数需要使用sess.graph , 因此我们需要把这句话放在获取session的后面。 这里的graph是将前面定义的框架信息收集起来,然后放在logs/目录下面。

sess = tf.Session() # get session
# tf.train.SummaryWriter soon be deprecated, use following
writer = tf.summary.FileWriter("logs/", sess.graph)

最后在你的terminal(终端)中 ,使用以下命令

tensorboard --logdir logs

同时将终端中输出的网址复制到浏览器中,便可以看到之前定义的视图框架了。

tensorboard 还有很多其他的参数,希望大家可以多多了解, 可以使用 tensorboard –help 查看tensorboard的详细参数
全部代码:

from __future__ import print_function
import tensorflow as tf


def add_layer(inputs, in_size, out_size, activation_function=None):
    # add one more layer and return the output of this layer
    with tf.name_scope('layer'):
        with tf.name_scope('weights'):
            Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
        with tf.name_scope('biases'):
            biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b, )
        return outputs


# define placeholder for inputs to network
with tf.name_scope('inputs'):
    xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
    ys = tf.placeholder(tf.float32, [None, 1], name='y_input')

# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

# the error between prediciton and real data
with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
                                        reduction_indices=[1]))

with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess = tf.Session()

# tf.train.SummaryWriter soon be deprecated, use following
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:  # tensorflow version < 0.12
    writer = tf.train.SummaryWriter('logs/', sess.graph)
else: # tensorflow version >= 0.12
    writer = tf.summary.FileWriter("logs/", sess.graph)

# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
    init = tf.initialize_all_variables()
else:
    init = tf.global_variables_initializer()
sess.run(init)

# direct to the local dir and run this in terminal:
# $ tensorboard --logdir=logs

可能会遇到的问题

(1) 而且与 tensorboard 兼容的浏览器是 “Google Chrome”. 使用其他的浏览器不保证所有内容都能正常显示.

(2) 同时注意, 如果使用 http://0.0.0.0:6006 网址打不开的朋友们, 请使用 http://localhost:6006, 大多数朋友都是这个问题.

(3) 请确保你的 tensorboard 指令是在你的 logs 文件根目录执行的. 如果在其他目录下, 比如 Desktop 等, 可能不会成功看到图. 比如在下面这个目录, 你要 cd 到 project 这个地方执行 /project > tensorboard –logdir logs

- project
   - logs
   model.py
   env.py

(4) 讨论区的朋友使用 anaconda 下的 python3.5 的虚拟环境, 如果你输入 tensorboard 的指令, 出现报错: “tensorboard” is not recognized as an internal or external command…

解决方法的关键就是需要**TensorFlow. 管理员模式打开 Anaconda Prompt, 输入 activate tensorflow, 接着按照上面的流程执行 tensorboard 指令.

Tensorboard可视化好帮手2

注意: 本节内容会用到浏览器, 而且与 tensorboard 兼容的浏览器是 “Google Chrome”. 使用其他的浏览器不保证所有内容都能正常显示.

上一篇讲到了 如何可视化TesorBorad整个神经网络结构的过程。 其实tensorboard还可以可视化训练过程( biase变化过程) , 这节重点讲一下可视化训练过程的图标是如何做的 。请看下图, 这是如何做到的呢?
可视化好助手Tensorboard
在histograms里面我们还可以看到更多的layers的变化:
可视化好助手Tensorboard
(P.S. 灰猫使用的 tensorflow v1.1 显示的效果可能和视频中的不太一样, 但是 tensorboard 的使用方法的是一样的。)

这里还有一个events , 在这次练习中我们会把 整个训练过程中的误差值(loss)在event里面显示出来, 甚至你可以显示更多你想要显示的东西.
可视化好助手Tensorboard
好了, 开始练习吧, 本节内容包括:

制作输入源

由于这节我们观察训练过程中神经网络的变化, 所以首先要添一些模拟数据. Python 的 numpy 工具包可以帮助我们制造一些模拟数据. 所以我们先导入这个工具包:

import tensorflow as tf
import numpy as np

然后借助 np 中的 np.linespace() 产生随机的数字, 同时为了模拟更加真实我们会添加一些噪声, 这些噪声是通过 np.random.normal() 随机产生的.

 ## make up some data
 x_data= np.linspace(-1, 1, 300, dtype=np.float32)[:,np.newaxis]
 noise=  np.random.normal(0, 0.05, x_data.shape).astype(np.float32)
 y_data= np.square(x_data) -0.5+ noise

输入源的问题解决之后, 我们开始制作对Weights和biases的变化图表吧. 我们期望可以做到如下的效果, 那么首先从 layer1/weight 做起吧
可视化好助手Tensorboard
这个效果是如何做到的呢,请看下一个标题

在 layer 中为 Weights, biases 设置变化图表

通过上图的观察我们发现每个 layer 后面有有一个数字: layer1 和layer2

于是我们在 add_layer() 方法中添加一个参数 n_layer,用来标识层数, 并且用变量 layer_name 代表其每层的名名称, 代码如下:

def add_layer(
    inputs , 
    in_size, 
    out_size,
    n_layer, 
    activation_function=None):
    ## add one more layer and return the output of this layer
    layer_name='layer%s'%n_layer  ## define a new var
    ## and so on ……

接下来,我们层中的Weights设置变化图, tensorflow中提供了tf.histogram_summary()方法,用来绘制图片, 第一个参数是图表的名称, 第二个参数是图表要记录的变量

def add_layer(inputs , 
            in_size, 
            out_size,n_layer, 
            activation_function=None):
    ## add one more layer and return the output of this layer
    layer_name='layer%s'%n_layer
    with tf.name_scope('layer'):
         with tf.name_scope('weights'):
              Weights= tf.Variable(tf.random_normal([in_size, out_size]),name='W')
              # tf.histogram_summary(layer_name+'/weights',Weights)   # tensorflow 0.12 以下版的
              tf.summary.histogram(layer_name + '/weights', Weights) # tensorflow >= 0.12
    ##and so no ……

同样的方法我们对biases进行绘制图标:

with tf.name_scope('biases'):
    biases = tf.Variable(tf.zeros([1,out_size])+0.1, name='b')
    # tf.histogram_summary(layer_name+'/biase',biases)   # tensorflow 0.12 以下版的
    tf.summary.histogram(layer_name + '/biases', biases)  # Tensorflow >= 0.12

至于activation_function 可以不绘制. 我们对output 使用同样的方法:

# tf.histogram_summary(layer_name+'/outputs',outputs) # tensorflow 0.12 以下版本
tf.summary.histogram(layer_name + '/outputs', outputs) # Tensorflow >= 0.12

最终经过我们的修改 , addlayer()方法成为如下的样子:

def add_layer(inputs , 
              in_size, 
              out_size,n_layer, 
              activation_function=None):
    ## add one more layer and return the output of this layer
    layer_name='layer%s'%n_layer
    with tf.name_scope(layer_name):
         with tf.name_scope('weights'):
              Weights= tf.Variable(tf.random_normal([in_size, out_size]),name='W')
              # tf.histogram_summary(layer_name+'/weights',Weights)
              tf.summary.histogram(layer_name + '/weights', Weights) # tensorflow >= 0.12

         with tf.name_scope('biases'):
              biases = tf.Variable(tf.zeros([1,out_size])+0.1, name='b')
              # tf.histogram_summary(layer_name+'/biase',biases)
              tf.summary.histogram(layer_name + '/biases', biases)  # Tensorflow >= 0.12

         with tf.name_scope('Wx_plus_b'):
              Wx_plus_b = tf.add(tf.matmul(inputs,Weights), biases)

         if activation_function is None:
            outputs=Wx_plus_b
         else:
            outputs= activation_function(Wx_plus_b)

         # tf.histogram_summary(layer_name+'/outputs',outputs)
         tf.summary.histogram(layer_name + '/outputs', outputs) # Tensorflow >= 0.12

    return outputs

修改之后的名称会显示在每个tensorboard中每个图表的上方显示, 如下图所示:
可视化好助手Tensorboard
由于我们对addlayer 添加了一个参数, 所以修改之前调用addlayer()函数的地方. 对此处进行修改:

# add hidden layer
l1= add_layer(xs, 1, 10 ,  activation_function=tf.nn.relu)
# add output  layer
prediction= add_layer(l1, 10, 1,  activation_function=None)

添加n_layer参数后, 修改成为 :

# add hidden layer
l1= add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
# add output  layer
prediction= add_layer(l1, 10, 1, n_layer=2, activation_function=None)

设置loss的变化图

Loss 的变化图和之前设置的方法略有不同. loss是在tesnorBorad 的event下面的, 这是由于我们使用的是tf.scalar_summary() 方法.
可视化好助手Tensorboard
观看loss的变化比较重要. 当你的loss呈下降的趋势,说明你的神经网络训练是有效果的.

修改后的代码片段如下:

with tf.name_scope('loss'):
     loss= tf.reduce_mean(tf.reduce_sum(
              tf.square(ys- prediction), reduction_indices=[1]))
     # tf.scalar_summary('loss',loss) # tensorflow < 0.12
     tf.summary.scalar('loss', loss) # tensorflow >= 0.12

给所有训练图合并

接下来, 开始合并打包。 tf.merge_all_summaries() 方法会对我们所有的 summaries 合并到一起. 因此在原有代码片段中添加:

sess= tf.Session()

# merged= tf.merge_all_summaries()    # tensorflow < 0.12
merged = tf.summary.merge_all() # tensorflow >= 0.12

# writer = tf.train.SummaryWriter('logs/', sess.graph)    # tensorflow < 0.12
writer = tf.summary.FileWriter("logs/", sess.graph) # tensorflow >=0.12

# sess.run(tf.initialize_all_variables()) # tf.initialize_all_variables() # tf 马上就要废弃这种写法
sess.run(tf.global_variables_initializer())  # 替换成这样就好

训练数据

假定给出了x_data,y_data并且训练1000次.

for i in range(1000):
   sess.run(train_step, feed_dict={xs:x_data, ys:y_data})

以上这些仅仅可以记录很绘制出训练的图表, 但是不会记录训练的数据。 为了较为直观显示训练过程中每个参数的变化,我们每隔上50次就记录一次结果 , 同时我们也应注意, merged 也是需要run 才能发挥作用的,所以在for循环中写下:

if i%50 == 0:
    rs = sess.run(merged,feed_dict={xs:x_data,ys:y_data})
    writer.add_summary(rs, i)

最后修改后的片段如下:

for i in range(1000):
   sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
   if i%50 == 0:
      rs = sess.run(merged,feed_dict={xs:x_data,ys:y_data})
      writer.add_summary(rs, i)

在 tensorboard 中查看效果

程序运行完毕之后, 会产生logs目录 , 使用命令 tensorboard –logdir logs

注意: 本节内容会用到浏览器, 而且与 tensorboard 兼容的浏览器是 “Google Chrome”. 使用其他的浏览器不保证所有内容都能正常显示.

同时注意, 如果使用 http://0.0.0.0:6006 或者 tensorboard 中显示的网址打不开的朋友们, 请使用 http://localhost:6006, 大多数朋友都是这个问题.

会有如下输出:
可视化好助手Tensorboard
将输出中显示的URL地址粘贴到浏览器中便可以查看. 最终的效果如下:
可视化好助手Tensorboard

相关标签: Tensorflow