欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Tensorflow(第一天)

程序员文章站 2022-03-17 14:46:09
...

tensor是tensorflow基础的一个概念——张量。 
Tensorflow用到了数据流图,数据流图包括数据(Data)、流(Flow)、图(Graph)。Tensorflow里的数据用到的都是tensor,所以谷歌起名为tensorflow。 
下面介绍张量几个比较重要的概念

张量的维度(秩):Rank/Order 
Tensorflow(第一天)
Rank为0、1、2时分别称为标量、向量和矩阵,Rank为3时是3阶张量,Rank大于3时是N阶张量。

这些标量、向量、矩阵和张量里每一个元素被称为tensor element(张量的元素),且同一个张量里元素的类型是保持一样的。

Tensor的属性

1.数据类型dtype d是data的首字母,type是类型的意思。tensor里每一个元素的数据类型是一样的。类似于Numpy中ndarray.dtype,tensorflow里的数据类型可以有很多种,比方说tf.float32就是32位的浮点数,tf.int8就是8位的整型,tf.unit8就是8位的无符号整型,tf.string为字符串等等。 
2.形状Shape 类似于Numpy中ndarray.shape,比方说一个2行3列的二维矩阵,他的形状就是2行3列。 
3.其他属性

device是tensor在哪个设备上被计算出来的,

graph是tensor所属的图,

name是tensor的名字 ,

op是operation的缩写是产生这个tensor的操作运算,

对应图上的结点,这些结点接收一些tensor作为输入并输出一些tensor。

还有等等属性,可以查阅官网。 
 

几种Tensor 
1.Constant(常量)是值不能改变的一种tensor,定义在tf.constant这个类里。

Tensorflow(第一天) 
constant中有几个属性,value就是constant的数值,我们可以给他赋值,比方说0维的scalar,1维的Vector,2维的matrix或者是3维的张量。dtype、shape、name刚都有写过,verify_shape是布尔值,用于验证值的形状。除了value外都不一定要指定,可以有默认的值但是必须要有一个value。 
2.Variable(变量)是值可以改变的一种tensor,定义在tf.Variable这个类中。构造函数如下图,我也看不懂其实。 
Tensorflow(第一天) 
3.Placeholder(占位符)先占住一个固定的位置,之后在往里面添加值的一种Tensor。定义在tf.placeholder中。这里只有三个属性如下图。并没有value,因为赋值后就不是占位符了。只有dtype,shape,name三个属性。赋值的机制用到了python中字典,即feed_dict。 
Tensorflow(第一天)

x = tf.palceholder(tf.float32, shape=(1024, 1024))
y = tf.matmul(x, x)
with if.Session() as sess:
    print(sess.run(y))
    rand_array = np.random.rand(1024, 1024)
    print(sess.run(y, feed_dict = {x: rand_array}))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

ps:代码解释:matmul的意思是矩阵相乘,具体情况可以查阅https://blog.csdn.net/u013713117/article/details/54598628

np.random.rand()函数——通过本函数可以返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1),不包括1

 

比刚说官网的例子定义了x占位符,数值类型是tf.float32,形状是1024*1024的二维矩阵。在用会话正式运行图的时候用feed_dict,首先给一个键后加真实的值。

4.SparseTensor(稀疏张量)是一种稀疏的Tensor,类似线代中稀疏矩阵。定义时只需要定义非0的数,其他的数会自动填充。 
Tensorflow(第一天)

Tensor表示法 
Tensorflow(第一天) 
tf.Tensor就是名字,’Const’是名字。0是索引,表示张量是这个计算中产生的第几个。shape=()是形状,这个是标量所以是空,dtype为数据类型。

相关标签: Tensorflow