卷积神经网络(一) Lenet Pytorch实现
程序员文章站
2022-03-17 14:28:33
...
Lenet 这个网络是最基础的卷积神经网络,学过一段时间的pytorch看着结构图应该就可以搭建出来了
1. lenet 网络结构图
2. lenet模型 代码实现
import torch.nn as nn
import torch.nn.functional as F
class LeNet(nn.Module):
#定义conv pool fc
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(32*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
#前向传播
def forward(self, x):
x = F.relu(self.conv1(x))
#(32-5)/1+1=28
# input(3, 32, 32) output(16, 28, 28)
x = self.pool1(x)
# output(16, 14, 14)
x = F.relu(self.conv2(x))
#(14-5)+1=10
# output(32, 10, 10)
x = self.pool2(x)
# output(32, 5, 5)
x = x.view(-1, 32*5*5)
# output(32*5*5)
x = F.relu(self.fc1(x))
# output(120)
x = F.relu(self.fc2(x))
# output(84)
x = self.fc3(x)
# output(10)
return x
3.查看模型输出:
这两行代码比较通用的,查看模型结构的时候直接写这两行代码接可以了
model=LeNet()
print(model)
4. 模型输出:
"""
LeNet(
(conv1): Conv2d(3, 16, kernel_size=(5, 5), stride=(1, 1))
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1))
(pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(fc1): Linear(in_features=800, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
"""
参考:
pytorh官方demo
论文地址:http://www.dengfanxin.cn/wp-content/uploads/2016/03/1998Lecun.pdf
推荐阅读
-
PyTorch上搭建简单神经网络实现回归和分类的示例
-
利用PyTorch实现循环神经网络RNN
-
Python通过TensorFlow卷积神经网络实现猫狗识别
-
Python使用scipy模块实现一维卷积运算示例
-
PyTorch上实现卷积神经网络CNN的方法
-
tensorflow2.0之keras实现卷积神经网络
-
TensorFlow 实战之实现卷积神经网络的实例讲解
-
深度之眼Pytorch打卡(十五):Pytorch卷积神经网络部件——转置卷积操作与转置卷积层(对转置卷积操作全网最细致分析,转置卷积的stride与padding,转置与反卷积名称论证)
-
自己动手实现一个神经网络多分类器
-
【Tensorflow】人脸128个关键点识别基于卷积神经网络实现