欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

经典卷积神经网络LeNet-5模型

程序员文章站 2022-03-17 14:25:34
...

经典的卷积神经网络模型有1998年的LeNet-5模型,2012年的AlexNet模型,2014年的VGG模型,2014年的GoogleNet模型和2015年的ResNet模型。
本文主要讲述经典LeNet-5模型,此模型一共有7层,结构如下图所示:
经典卷积神经网络LeNet-5模型
7层结构分别是:
卷积层-池化层-卷积层-池化层-全连接层-全连接层-全链接输出层
以下是LeNet-5模型的代码,在神经网络代码之上做的修改即可实现,代码如下。。。

此部分为LeNet-5模型中的lenet_inference.py代码部分,把神经网络的结构给改了,加入了卷积层和池化层。

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 10 11:36:35 2017

@author: cxl
"""

import tensorflow as tf
#INPUT_NODE = 784
#OUTPUT_NODE = 10
IMAGE_SIZE = 28
NUM_CHANNELS = 1
NUM_LABELS = 10

CONV1_DEEP = 32
CONV1_SIZE = 5

CONV2_DEEP = 64
CONV2_SIZE = 5

FC_SIZE = 512



def inference(input_tensor,train,regularizer):
    with tf.variable_scope('layer1-conv1'):
        conv1_weights =tf.get_variable("weight",[CONV1_SIZE,CONV1_SIZE,
            NUM_CHANNELS,CONV1_DEEP],
            initializer = tf.truncated_normal_initializer(stddev = 0.1))
        conv1_biases = tf.get_variable("bias",[CONV1_DEEP],
            initializer = tf.constant_initializer(0.0))
        conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides = [1,1,1,1],
            padding = "SAME")
        relu1=tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))

        with tf.name_scope('layer2-pool1'):
            pool1 = tf.nn.max_pool(relu1,ksize = [1,2,2,1],strides=[1,2,2,1],
                padding = 'SAME')


    with tf.variable_scope('layer3-conv2'):
        conv2_weights =tf.get_variable("weight",[CONV2_SIZE,CONV2_SIZE,
            CONV1_DEEP,CONV2_DEEP],
            initializer = tf.truncated_normal_initializer(stddev = 0.1))
        conv2_biases = tf.get_variable("bias",[CONV2_DEEP],
            initializer = tf.constant_initializer(0.0))
        conv2 = tf.nn.conv2d(pool1,conv2_weights,strides = [1,1,1,1],
            padding = "SAME")
        relu2=tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))

        with tf.name_scope('layer4-pool2'):
            pool2 = tf.nn.max_pool(relu2,ksize = [1,2,2,1],strides=[1,2,2,1],
                padding = 'SAME')


    pool_shape=pool2.get_shape().as_list()
    nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
    reshaped = tf.reshape(pool2,[pool_shape[0],nodes])

    with tf.variable_scope('layer5-fc1'):
        fc1_weights = tf.get_variable("weights",[nodes,FC_SIZE],
            initializer = tf.truncated_normal_initializer(stddev = 0.1))

        if regularizer != None:
            tf.add_to_collection("losses",regularizer(fc1_weights))
        fc1_biases = tf.get_variable("bias",[FC_SIZE],
            initializer = tf.constant_initializer(0.1))

        fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights)+fc1_biases)
        if train: fc1 = tf.nn.dropout(fc1,0.5)


    with tf.variable_scope('layer6-fc2'):
        fc2_weights = tf.get_variable("weights",[FC_SIZE,NUM_LABELS],
            initializer = tf.truncated_normal_initializer(stddev = 0.1))

        if regularizer != None:
            tf.add_to_collection("losses",regularizer(fc2_weights))
        fc2_biases = tf.get_variable("bias",[NUM_LABELS],
            initializer = tf.constant_initializer(0.1))

        logit = tf.matmul(fc1,fc2_weights)+fc2_biases
    return logit

此部分为LeNet-5模型中的lenet_train.py代码部分,只修改了数据输入的格式。

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 10 15:45:22 2017

@author: cxl
"""

import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import lenet_inference
import numpy as np

BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.01
LEARNING_RATE_DECAY=0.99
REGULARAZTION_RATE=0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY=0.99

MODEL_SAVE_PATH = "./path/to/model/"
MODEL_NAME = "model.ckpt"

def train(mnist):
    x=tf.placeholder(tf.float32,[BATCH_SIZE,lenet_inference.IMAGE_SIZE,
        mnist_inference.IMAGE_SIZE,lenet_inference.NUM_CHANNELS],name='x-input')

    y_=tf.placeholder(tf.float32,[None,lenet_inference.NUM_LABELS],name='y-input')

    regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
    y = lenet_inference.inference(x,True,regularizer)
    global_step = tf.Variable(0,trainable=False)

    variable_averages = tf.train.ExponentialMovingAverage(
        MOVING_AVERAGE_DECAY,global_step)
    variables_averages_op=variable_averages.apply(tf.trainable_variables())

    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=y,labels=tf.argmax(y_,1))
    cross_entropy_mean=tf.reduce_mean(cross_entropy)
    loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,global_step,mnist.train.num_examples/BATCH_SIZE,
        LEARNING_RATE_DECAY)
    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step)
    with tf.control_dependencies([train_step,variables_averages_op]):
        train_op = tf.no_op(name = 'train')


    saver = tf.train.Saver()
    with tf.Session() as sess:
        tf.initialize_all_variables().run()
        for i in range(TRAINING_STEPS):
            xs,ys = mnist.train.next_batch(BATCH_SIZE)
            reshaped_xs = np.reshape(xs,(BATCH_SIZE,
                                         lenet_inference.IMAGE_SIZE,
                                         lenet_inference.IMAGE_SIZE,
                                         lenet_inference.NUM_CHANNELS
                                         ))            

            _,loss_value,step = sess.run([train_op,loss,global_step],
                feed_dict={x:reshaped_xs,y_:ys})



            if i%1000 ==0:
                print("After %d training step(s),loss on training"
                      "batch is %g."%(step,loss_value))
                saver.save(sess,os.path.join(MODEL_SAVE_PATH,MODEL_NAME),
                      global_step = global_step)


def main(argv = None):
    mnist = input_data.read_data_sets("/tmp/data",one_hot=True)    
    train(mnist)


if __name__=='__main__':
    tf.app.run()

此部分为LeNet-5模型中的lenet_eval.py代码部分,此部分也只修改了数据输入的格式。

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 10 23:29:34 2017

@author: cxl
"""

import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import lenet_inference
import lenet_train

EVAL_INTERVAL_SECS = 10

def evaluate(mnist):
    #with tf.Graph().as_default() as g:
    #x=tf.placeholder(tf.float32,[None,lenet_inference.INPUT_NODE],name = 'x-input')
    x=tf.placeholder(tf.float32,[mnist.validation.num_examples,
                                         lenet_inference.IMAGE_SIZE,
                                         lenet_inference.IMAGE_SIZE,
                                         lenet_inference.NUM_CHANNELS],name='x-input')
    y_= tf.placeholder(tf.float32,[None,lenet_inference.OUTPUT_NODE],name = 'y-input')

    xs,ys = mnist.validation.images,mnist.validation.labels
    reshaped_xs = np.reshape(xs,(mnist.validation.num_examples,
                                         lenet_inference.IMAGE_SIZE,
                                         lenet_inference.IMAGE_SIZE,
                                         lenet_inference.NUM_CHANNELS
                                         )) 

    validate_feed = {x:reshaped_xs,y_:ys}

    y = lenet_inference.inference(x,False,None)
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

    variable_averages = tf.train.ExponentialMovingAverage(
        lenet_train.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)

    while True:
        with tf.Session() as sess:
            ckpt = tf.train.get_checkpoint_state(lenet_train.MODEL_SAVE_PATH)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess,ckpt.model_checkpoint_path)
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                accuracy_score = sess.run(accuracy,feed_dict = validate_feed)
                print("After %s training step(s),validation"
                      "accuracy = %g" % (global_step,accuracy_score))
            else:
                print("No checkpoint file found")
                return
                time.sleep(EVAL_INTERVAL_SECS)


def main(argv = None):
    mnist = input_data.read_data_sets("/tmp/data",one_hot = True)
    evaluate(mnist)


if __name__ == '__main__':
    tf.app.run()

以上程序均已调试成功,如有错误,希望各位小伙伴加以批评指正哈!

相关标签: 卷积神经网络