欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

pytorch 使用AlexNet实现Mnist手写数字识别

程序员文章站 2022-03-16 19:27:15
...

AlexNet网络框架如下:pytorch 使用AlexNet实现Mnist手写数字识别AlexNet的原始输入图片大小为224*224,Mnist数据集中图片大小为28*28,所以需要对网络参数进行修改。

先掉用train函数进行训练,训练好的参数会保存在params.pth文件中,训练好使用本地图片(画图软件生成)进行测试。

完整程序如下:

import torch
import torchvision as tv
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim

import cv2
# 定义是否使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


# 定义AlexNet网络结构
class AlexNet(nn.Module):
    def __init__(self, width_mult=1):
        super(AlexNet, self).__init__()
        self.layer1 = nn.Sequential( # 输入1*28*28
            nn.Conv2d(1, 32, kernel_size=3, padding=1), # 32*28*28
            nn.MaxPool2d(kernel_size=2, stride=2), # 32*14*14
            nn.ReLU(inplace=True),
            )
        self.layer2 = nn.Sequential(
            nn.Conv2d(32, 64, kernel_size=3, padding=1), # 64*14*14
            nn.MaxPool2d(kernel_size=2, stride=2), # 64*7*7
            nn.ReLU(inplace=True),
            )
        self.layer3 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3, padding=1), # 128*7*7
            )
        self.layer4 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=3, padding=1), # 256*7*7
            )

        self.layer5 = nn.Sequential(
            nn.Conv2d(256, 256, kernel_size=3, padding=1), # 256*7*7
            nn.MaxPool2d(kernel_size=3, stride=2), # 256*3*3
            nn.ReLU(inplace=True),
            )
        self.fc1 = nn.Linear(256*3*3, 1024)
        self.fc2 = nn.Linear(1024, 512)
        self.fc3 = nn.Linear(512, 10)

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.layer5(x)
        x = x.view(-1, 256*3*3)
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x


# 超参数设置
EPOCH = 10 # 遍历数据集次数
BATCH_SIZE = 64  # 批处理尺寸(batch_size)
LR = 0.01  # 学习率

# 定义数据预处理方式
transform = transforms.ToTensor()

# 定义训练数据集
trainset = tv.datasets.MNIST(
    root='./data/',
    train=True,
    download=False,
    transform=transform)

# 定义训练批处理数据
trainloader = torch.utils.data.DataLoader(
    trainset,
    batch_size=BATCH_SIZE,
    shuffle=True,
)

# 定义测试数据集
testset = tv.datasets.MNIST(
    root='./data/',
    train=False,
    download=False,
    transform=transform)

# 定义测试批处理数据
testloader = torch.utils.data.DataLoader(
    testset,
    batch_size=BATCH_SIZE,
    shuffle=False,
)

# 定义损失函数loss function 和优化方式(采用SGD)
net = AlexNet().to(device)
a = torch.load('./params.pth')
net.load_state_dict(torch.load('./params.pth'))
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,通常用于多分类问题上
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9)

# 训练并保存模型参数
def train():

    for epoch in range(EPOCH):
        sum_loss = 0.0
        # 数据读取
        for i, data in enumerate(trainloader):
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)

            # 梯度清零
            optimizer.zero_grad()

            # forward + backward
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            # 每训练100个batch打印一次平均loss
            sum_loss += loss.item()
            if i % 100 == 99:
                print('[%d, %d] loss: %.03f'
                      % (epoch + 1, i + 1, sum_loss / 100))
                sum_loss = 0.0
        # 每跑完一次epoch测试一下准确率
        with torch.no_grad():
            correct = 0
            total = 0
            for data in testloader:
                images, labels = data
                images, labels = images.to(device), labels.to(device)
                outputs = net(images)
                # 取得分最高的那个类
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum()
            print('第%d个epoch的识别准确率为:%d%%' % (epoch + 1, (100 * correct / total)))
        # 保存模型参数
        torch.save(net.state_dict(), './params.pth')

if __name__ == "__main__":
    # train()

    img = cv2.imread('./2.png', cv2.IMREAD_GRAYSCALE)
    img = cv2.resize(img,(28, 28))
    img = torch.from_numpy(img).float()
    img = img.view(1, 1, 28, 28)
    img = img.to(device)
    outputs = net(img)
    _, predicted = torch.max(outputs.data, 1)
    print(predicted.to('cpu').numpy().squeeze())

    # cv2.imshow('', img)
    # cv2.waitKey(0)

 

相关标签: 深度学习