CodeForces - 385E Bear in the Field (矩阵快速幂)
程序员文章站
2022-03-16 18:44:52
...
转移方程:
速度方程dx[i] dy[i]
//前一个位置的速度 + K(草莓数:(原始草莓:)sx[t-1] + sy[t-1]+(到t-1时刻增加的草莓) (t - 1))
dx[t] = dx[t-1] + sx[t-1] + sy[t-1] + t-1
dy[t] = dy[t-1] + sx[t-1] + sy[t-1] + t-1
位置方程sx[i] sy[i]
//前一个位置 + dx[t] (??)
sx[t] = sx[t-1] + dx[t-1] + sx[t-1] + sy[t-1] + t-1
sy[t] = sy[t-1] + dy[t-1] + sx[t-1] + sy[t-1] + t-1
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <vector>
#include <ctime>
#define ll long long
using namespace std;
typedef vector<ll> vec;
typedef vector<vec> mat;
ll n, sx, sy, dx, dy, t;
mat mul(mat &A, mat &B) {
mat C(A.size(), vec(B[0].size()));
for (int i = 0; i < A.size(); i++) {
for (int k = 0; k < B.size(); k++) {
for (int j = 0; j < B[0].size(); j++) {
C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % n;
if(C[i][j] == 0) C[i][j] = n;
}
}
}
return C;
}
mat pow(mat A, ll n) {
mat B(A.size(), vec(A.size()));
for (int i = 0; i < A.size(); i++) {
B[i][i] = 1;
}
while(n > 0) {
if(n & 1) B = mul(B, A);
A = mul(A, A);
n >>= 1;
}
return B;
}
void solve() {
mat A(6, vec(6));
for(int i = 0; i < 6; i++) {
for(int j = 0; j < 6; j++) {
if(i == j) A[i][j] = 1;
else A[i][j] = 0;
}
}
A[0][0] = A[1][1] = 2;
A[0][1] = A[0][2] = A[0][4] = A[1][0] = A[1][3] = A[1][4] = A[2][0] = A[2][1] = A[2][2] = A[2][4] = 1;
A[3][0] = A[3][1] = A[3][3] = A[3][4] = A[4][4] = A[4][5] = A[5][5] = 1;
A = pow(A, t);
mat B(6, vec(1));
B[0][0] = sx, B[1][0] = sy, B[2][0] = dx, B[3][0] = dy, B[4][0] = 0, B[5][0] = 1;
B = mul(A, B);
if(B[0][0] < 0) B[0][0] += n;
if(B[1][0] < 0) B[1][0] += n;
printf("%lld %lld\n",B[0][0], B[1][0]);
}
int main() {
scanf("%lld %lld %lld %lld %lld %lld", &n, &sx, &sy, &dx, &dy, &t);
if(n == 1) {
printf("1 1\n");
return 0;
}
solve();
}
推荐阅读
-
Codeforces 821E Okabe and El Psy Kongroo【Dp+矩阵快速幂】套路题
-
CodeForces 385 E.Bear in the Field(dp+矩阵快速幂)
-
Codeforeces Round #226 (Div. 2) E---Bear in the Field(矩阵快速幂)
-
Codeforces Round #566 (Div. 2) E(矩阵快速幂)
-
Codeforces 514E Darth Vader and Tree【Dp+矩阵快速幂优化】
-
Codeforces 821E Okabe and El Psy Kongroo(Dp+矩阵快速幂)
-
CodeForces - 821E Okabe and El Psy Kongroo dp+矩阵快速幂
-
Codeforces 989E A Trance of Nightfall 矩阵快速幂+DP
-
Codeforces Round #258 (Div. 2) B. Jzzhu and Sequences(矩阵快速幂)_html/css_WEB-ITnose
-
Codeforces 227E/226C Anniversary 斐波那契数列性质+矩阵快速幂