欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

[Pytorch]pytorch中的LSTM模型

程序员文章站 2022-03-16 17:24:53
...

公式表示

Pytorch中LSTM的公式表示为:

it=σ(Wiixt+bii+Whih(t1)+bhi)

ft=σ(Wifxt+bif+Whfh(t1)+bhf)

gt=tanh(Wigxt+big+Whgh(t1)+bhg)

ot=σ(Wioxt+bio+Whoh(t1)+bho)

ct=ftc(t1)+itgt

ht=ottanh(ct)

其中it为输入门,ft为遗忘门,gt为细胞门的输出,ot为输出门,ct为细胞t时刻的状态,htt时刻的隐藏层状态。

定义

Pytorch中LSTM的定义如下:

class torch.nn.LSTM(*args, **kwargs)

参数列表

  • input_size:x的特征维度
  • hidden_size:隐藏层的特征维度
  • num_layers:lstm隐层的层数,默认为1
  • bias:False则bih=0和bhh=0. 默认为True
  • batch_first:True则输入输出的数据格式为 (batch, seq, feature)
  • dropout:除最后一层,每一层的输出都进行dropout,默认为: 0
  • bidirectional:True则为双向lstm默认为False
  • 输入:input, (h0, c0)
  • 输出:output, (hn,cn)

输入数据格式:
input(seq_len, batch, input_size)
h0(num_layers * num_directions, batch, hidden_size)
c0(num_layers * num_directions, batch, hidden_size)

输出数据格式:
output(seq_len, batch, hidden_size * num_directions)
hn(num_layers * num_directions, batch, hidden_size)
cn(num_layers * num_directions, batch, hidden_size)

实例:基于LSTM的词性标注模型

import torch
import gensim
torch.manual_seed(2)

datas=[('你 叫 什么 名字 ?','n v n n f'),('今天 天气 怎么样 ?','n n adj f'),]
words=[ data[0].split() for data in datas]
tags=[ data[1].split() for data in datas]


id2word=gensim.corpora.Dictionary(words)
word2id=id2word.token2id

id2tag=gensim.corpora.Dictionary(tags)
tag2id=id2tag.token2id

def sen2id(inputs):
    return [word2id[word] for word in inputs]
def tags2id(inputs):
    return [tag2id[word] for word in inputs]
# print(sen2id('你 叫 什么 名字'.split()))
def formart_input(inputs):
    return torch.autograd.Variable(torch.LongTensor(sen2id(inputs)))
def formart_tag(inputs):
    return torch.autograd.Variable(torch.LongTensor(tags2id(inputs)),)

class LSTMTagger(torch.nn.Module):
    def __init__(self,embedding_dim,hidden_dim,voacb_size,target_size):
        super(LSTMTagger,self).__init__()
        self.embedding_dim=embedding_dim
        self.hidden_dim=hidden_dim
        self.voacb_size=voacb_size
        self.target_size=target_size
        self.lstm=torch.nn.LSTM(self.embedding_dim,self.hidden_dim)
        self.log_softmax=torch.nn.LogSoftmax()
        self.embedding=torch.nn.Embedding(self.voacb_size,self.embedding_dim)
        self.hidden=(torch.autograd.Variable(torch.zeros(1,1,self.hidden_dim)),torch.autograd.Variable(torch.zeros(1,1,self.hidden_dim)))
        self.out2tag=torch.nn.Linear(self.hidden_dim,self.target_size)
    def forward(self,inputs):
        input=self.embedding((inputs))
        out,self.hidden=self.lstm(input.view(-1,1,self.embedding_dim),self.hidden)
        tags=self.log_softmax(self.out2tag(out.view(-1,self.hidden_dim)))
        return tags

model=LSTMTagger(3,3,len(word2id),len(tag2id))
loss_function=torch.nn.NLLLoss()
optimizer=torch.optim.SGD(model.parameters(),lr=0.1)
for _ in range(100):
    model.zero_grad()
    input=formart_input('你 叫 什么 名字'.split())
    tags=formart_tag('n n adj f'.split())
    out=model(input)
    loss=loss_function(out,tags)
    loss.backward(retain_variables=True)
    optimizer.step()
    print(loss.data[0])
input=formart_input('你 叫 什么'.split())
out=model(input)
out=torch.max(out,1)[1]
print([id2tag[out.data[i]] for i in range(0,out.size()[0])])
相关标签: lstm