Python画3D图
程序员文章站
2023-10-27 15:30:40
from mpl_toolkits.mplot3d import Axes3Dimport matplotlib.pyplot as pltimport numpy as npimport pandas as pdmy_dpi=96plt.figure(figsize=(480/my_dpi, 480/my_dpi), dpi=my_dpi)df=pd.DataFrame({'X': range(1,101), 'Y': np.random.randn(100)*15+range(1,10....
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
my_dpi=96
plt.figure(figsize=(480/my_dpi, 480/my_dpi), dpi=my_dpi)
df=pd.DataFrame({'X': range(1,101), 'Y': np.random.randn(100)*15+range(1,101), 'Z': (np.random.randn(100)*15+range(1,101))*2 })
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(df['X'], df['Y'], df['Z'], c='skyblue', s=60)
ax.view_init(30, 185)
plt.show()
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
my_dpi=96
plt.figure(figsize=(480/my_dpi, 480/my_dpi), dpi=my_dpi)
url = 'https://python-graph-gallery.com/wp-content/uploads/volcano.csv'
data = pd.read_csv(url)
df=data.unstack().reset_index()
df.columns=["X","Y","Z"]
df['X']=pd.Categorical(df['X'])
df['X']=df['X'].cat.codes
fig = plt.figure()
ax = fig.gca(projection='3d')
surf=ax.plot_trisurf(df['Y'], df['X'], df['Z'], cmap=plt.cm.viridis, linewidth=0.2)
fig.colorbar( surf, shrink=0.5, aspect=5)
plt.show()
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
my_dpi=96
plt.figure(figsize=(480/my_dpi, 480/my_dpi), dpi=my_dpi)
url = 'https://python-graph-gallery.com/wp-content/uploads/volcano.csv'
data = pd.read_csv(url)
df=data.unstack().reset_index()
df.columns=["X","Y","Z"]
df['X']=pd.Categorical(df['X'])
df['X']=df['X'].cat.codes
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_trisurf(df['Y'], df['X'], df['Z'], cmap=plt.cm.jet, linewidth=0.01)
plt.show()
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("white")
df = sns.load_dataset('iris')
my_dpi=96
plt.figure(figsize=(480/my_dpi, 480/my_dpi), dpi=my_dpi)
df['species']=pd.Categorical(df['species'])
my_color=df['species'].cat.codes
df = df.drop('species', 1)
pca = PCA(n_components=3)
pca.fit(df)
result=pd.DataFrame(pca.transform(df), columns=['PCA%i' % i for i in range(3)], index=df.index)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(result['PCA0'], result['PCA1'], result['PCA2'], c=my_color, cmap="Set2_r", s=60)
xAxisLine = ((min(result['PCA0']), max(result['PCA0'])), (0, 0), (0,0))
ax.plot(xAxisLine[0], xAxisLine[1], xAxisLine[2], 'r')
yAxisLine = ((0, 0), (min(result['PCA1']), max(result['PCA1'])), (0,0))
ax.plot(yAxisLine[0], yAxisLine[1], yAxisLine[2], 'r')
zAxisLine = ((0, 0), (0,0), (min(result['PCA2']), max(result['PCA2'])))
ax.plot(zAxisLine[0], zAxisLine[1], zAxisLine[2], 'r')
ax.set_xlabel("PC1")
ax.set_ylabel("PC2")
ax.set_zlabel("PC3")
ax.set_title("PCA on the iris data set")
plt.show()
import matplotlib.pyplot as plt
import pandas as pd
from math import pi
df = pd.DataFrame({
'group': ['A','B','C','D'],
'var1': [38, 1.5, 30, 4],
'var2': [29, 10, 9, 34],
'var3': [8, 39, 23, 24],
'var4': [7, 31, 33, 14],
'var5': [28, 15, 32, 14]
})
def make_spider( row, title, color):
categories=list(df)[1:]
N = len(categories)
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]
ax = plt.subplot(2,2,row+1, polar=True, )
ax.set_theta_offset(pi / 2)
ax.set_theta_direction(-1)
plt.xticks(angles[:-1], categories, color='grey', size=8)
ax.set_rlabel_position(0)
plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)
plt.ylim(0,40)
values=df.loc[row].drop('group').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, color=color, linewidth=2, linestyle='solid')
ax.fill(angles, values, color=color, alpha=0.4)
# 添加标题
plt.title(title, size=11, color=color, y=1.1)
my_dpi=96
plt.figure(figsize=(1000/my_dpi, 1000/my_dpi), dpi=my_dpi)
my_palette = plt.cm.get_cmap("Set2", len(df.index))
for row in range(0, len(df.index)):
make_spider( row=row, title='group '+df['group'][row], color=my_palette(row))
plt.show()
本博主新开公众号, 希望大家能扫码关注一下,十分感谢大家。
本文来自:https://github.com/holtzy/The-Python-Graph-Gallery/blob/master/PGG_notebook.py
本文地址:https://blog.csdn.net/weixin_41869644/article/details/107568437
上一篇: RMAN命令详解和常用汇总
下一篇: 30个提高Web程序执行效率的好经验分享