欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

TCP/IP数据报及三次握手四次挥手

程序员文章站 2022-03-16 11:23:45
...

1.TCP数据报结构

客户端在收发数据前要使用 connect() 函数和服务器建立连接。建立连接的目的是保证IP地址、端口、物理链路等正确无误,为数据的传输开辟通道。

TCP建立连接时要传输三个数据包,俗称三次握手(Three-way Handshaking)。可以形象的比喻为下面的对话:

  • [Shake 1] 套接字A:“你好,套接字B,我这里有数据要传送给你,建立连接吧。”
  • [Shake 2] 套接字B:“好的,我这边已准备就绪。”
  • [Shake 3] 套接字A:“谢谢你受理我的请求。”

我们先来看一下TCP数据报的结构:
TCP/IP数据报及三次握手四次挥手
带阴影的几个字段需要重点说明一下:

  1. 序号:Seq(Sequence Number)序号占32位,用来标识从计算机A发送到计算机B的数据包的序号,计算机发送数据时对此进行标记。

  2. 确认号:Ack(Acknowledge Number)确认号占32位,客户端和服务器端都可以发送,Ack = Seq + 1。

  3. 标志位:每个标志位占用1Bit,共有6个,分别为 URG、ACK、PSH、RST、SYN、FIN,具体含义如下:

    • URG:紧急指针(urgent pointer)有效。
    • ACK:确认序号有效。
    • PSH:接收方应该尽快将这个报文交给应用层。
    • RST:重置连接。
    • SYN:建立一个新连接。
    • FIN:断开一个连接。

对英文字母缩写的总结:Seq 是 Sequence 的缩写,表示序列;Ack(ACK) 是 Acknowledge 的缩写,表示确认;SYN 是 Synchronous 的缩写,愿意是“同步的”,这里表示建立同步连接;FIN 是 Finish 的缩写,表示完成。

2. 连接的建立 (三次握手)

使用 connect() 建立连接时,客户端和服务器端会相互发送三个数据包,请看下图:
TCP/IP数据报及三次握手四次挥手
客户端调用 socket() 函数创建套接字后,因为没有建立连接,所以套接字处于CLOSED状态;服务器端调用 listen() 函数后,套接字进入LISTEN状态,开始监听客户端请求。
这个时候,客户端开始发起请求:

  1. 当客户端调用 connect() 函数后,TCP协议会组建一个数据包,并设置 SYN 标志位,表示该数据包是用来建立同步连接的。同时生成一个随机数字 1000,填充“序号(Seq)”字段,表示该数据包的序号。完成这些工作,开始向服务器端发送数据包,客户端就进入了SYN-SEND状态。
  2. 服务器端收到数据包,检测到已经设置了 SYN 标志位,就知道这是客户端发来的建立连接的“请求包”。服务器端也会组建一个数据包,并设置 SYN 和 ACK 标志位,SYN 表示该数据包用来建立连接,ACK 用来确认收到了刚才客户端发送的数据包。
    服务器生成一个随机数 2000,填充“序号(Seq)”字段。2000 和客户端数据包没有关系
    服务器将客户端数据包序号(1000)加1,得到1001,并用这个数字填充“确认号(Ack)”字段。
    服务器将数据包发出,进入SYN-RECV状态。
  3. 客户端收到数据包,检测到已经设置了 SYN 和 ACK 标志位,就知道这是服务器发来的“确认包”。客户端会检测“确认号(Ack)”字段,看它的值是否为 1000+1,如果是就说明连接建立成功。
    接下来,客户端会继续组建数据包,并设置 ACK 标志位,表示客户端正确接收了服务器发来的“确认包”。同时,将刚才服务器发来的数据包序号(2000)加1,得到 2001,并用这个数字来填充“确认号(Ack)”字段。
    客户端将数据包发出,进入ESTABLISED状态,表示连接已经成功建立。
  4. 服务器端收到数据包,检测到已经设置了 ACK 标志位,就知道这是客户端发来的“确认包”。服务器会检测“确认号(Ack)”字段,看它的值是否为 2000+1,如果是就说明连接建立成功,服务器进入ESTABLISED状态。

至此,客户端和服务器都进入了ESTABLISED状态,连接建立成功,接下来就可以收发数据了。

三次握手的关键是要确认对方收到了自己的数据包,这个目标就是通过“确认号(Ack)”字段实现的。计算机会记录下自己发送的数据包序号 Seq,待收到对方的数据包后,检测“确认号(Ack)”字段,看Ack = Seq + 1是否成立,如果成立说明对方正确收到了自己的数据包。

3 TCP数据的传输

建立连接后,两台主机就可以相互传输数据了。如下图所示:
TCP/IP数据报及三次握手四次挥手
上图给出了主机A分2次(分2个数据包)向主机B传递200字节的过程。
首先,主机A通过1个数据包发送100个字节的数据,数据包的 Seq 号设置为 1200。主机B为了确认这一点,向主机A发送 ACK 包,并将 Ack 号设置为 1301。

为了保证数据准确到达,目标机器在收到数据包(包括SYN包、FIN包、普通数据包等)包后必须立即回传ACK包,这样发送方才能确认数据传输成功。

此时 Ack 号为 1301 而不是 1201,原因在于 Ack 的增量为传输的数据字节数。假设每次 Ack 号不加传输的字节数,这样虽然可以确认数据包的传输,但无法明确100字节全部正确传递还是丢失了一部分,比如只传递了80字节。因此按如下的公式确认 Ack 号:

Ack号 = Seq号 + 传递的字节数 + 1

与三次握手协议相同,最后加 1 是为了告诉对方要传递的 Seq 号。

下面分析传输过程中数据包丢失的情况,如下图所示:
TCP/IP数据报及三次握手四次挥手
上图表示通过 Seq 1301 数据包向主机B传递100字节的数据,但中间发生了错误,主机B未收到。经过一段时间后,主机A仍未收到对于 Seq 1301 的ACK确认,因此尝试重传数据。

为了完成数据包的重传,TCP套接字每次发送数据包时都会启动定时器,如果在一定时间内没有收到目标机器传回的 ACK 包,那么定时器超时,数据包会重传。

上图演示的是数据包丢失的情况,也会有 ACK 包丢失的情况,一样会重传。

重传超时时间(RTO, Retransmission Time Out)
这个值太大了会导致不必要的等待,太小会导致不必要的重传,理论上最好是网络 RTT 时间,但又受制于网络距离与瞬态时延变化,所以实际上使用自适应的动态算法(例如 Jacobson 算法和 Karn 算法等)来确定超时时间。

往返时间(RTT,Round-Trip Time)表示从发送端发送数据开始,到发送端收到来自接收端的 ACK 确认包(接收端收到数据后便立即确认),总共经历的时延。
重传次数

TCP数据包重传次数根据系统设置的不同而有所区别。有些系统,一个数据包只会被重传3次,如果重传3次后还未收到该数据包的 ACK 确认,就不再尝试重传。但有些要求很高的业务系统,会不断地重传丢失的数据包,以尽最大可能保证业务数据的正常交互。
最后需要说明的是,发送端只有在收到对方的 ACK 确认包后,才会清空输出缓冲区中的数据。

4. 断开连接 (四次挥手)

建立连接非常重要,它是数据正确传输的前提;断开连接同样重要,它让计算机释放不再使用的资源。如果连接不能正常断开,不仅会造成数据传输错误,还会导致套接字不能关闭,持续占用资源,如果并发量高,服务器压力堪忧。

建立连接需要三次握手,断开连接需要四次握手,可以形象的比喻为下面的对话:

  • [Shake 1] 套接字A:“任务处理完毕,我希望断开连接。”
  • [Shake 2] 套接字B:“哦,是吗?请稍等,我准备一下。”
  • 等待片刻后……
  • [Shake 3] 套接字B:“我准备好了,可以断开连接了。”
  • [Shake 4] 套接字A:“好的,谢谢合作。”

下图演示了客户端主动断开连接的场景:
TCP/IP数据报及三次握手四次挥手
建立连接后,客户端和服务器都处于ESTABLISED状态。这时,客户端发起断开连接的请求:

  1. 客户端调用 close() 函数后,向服务器发送 FIN 数据包,进入FIN_WAIT_1状态。FIN 是 Finish 的缩写,表示完成任务需要断开连接。
  2. 服务器收到数据包后,检测到设置了 FIN 标志位,知道要断开连接,于是向客户端发送“确认包”,进入CLOSE_WAIT状态。

注意:服务器收到请求后并不是立即断开连接,而是先向客户端发送“确认包”,告诉它我知道了,我需要准备一下才能断开连接。

  1. 客户端收到“确认包”后进入FIN_WAIT_2状态,等待服务器准备完毕后再次发送数据包。
  2. 等待片刻后,服务器准备完毕,可以断开连接,于是再主动向客户端发送 FIN 包,告诉它我准备好了,断开连接吧。然后进入LAST_ACK状态。
  3. 客户端收到服务器的 FIN 包后,再向服务器发送 ACK 包,告诉它你断开连接吧。然后进入TIME_WAIT状态。
  4. 服务器收到客户端的 ACK 包后,就断开连接,关闭套接字,进入CLOSED状态。

关于 TIME_WAIT 状态的说明

客户端最后一次发送 ACK包后进入 TIME_WAIT 状态,而不是直接进入 CLOSED 状态关闭连接,这是为什么呢?

  • TCP 是面向连接的传输方式,必须保证数据能够正确到达目标机器,不能丢失或出错,而网络是不稳定的,随时可能会毁坏数据,所以机器A每次向机器B发送数据包后,都要求机器B”确认“,回传ACK包,告诉机器A我收到了,这样机器A才能知道数据传送成功了。如果机器B没有回传ACK包,机器A会重新发送,直到机器B回传ACK包。

  • 客户端最后一次向服务器回传ACK包时,有可能会因为网络问题导致服务器收不到,服务器会再次发送 FIN 包,如果这时客户端完全关闭了连接,那么服务器无论如何也收不到ACK包了,所以客户端需要等待片刻、确认对方收到ACK包后才能进入CLOSED状态。那么,要等待多久呢?

  • 数据包在网络中是有生存时间的,超过这个时间还未到达目标主机就会被丢弃,并通知源主机。这称为报文最大生存时间(MSL,Maximum Segment Lifetime)。TIME_WAIT 要等待 2MSL 才会进入 CLOSED 状态。ACK 包到达服务器需要 MSL 时间,服务器重传 FIN 包也需要 MSL 时间,2MSL 是数据包往返的最大时间,如果 2MSL 后还未收到服务器重传的 FIN 包,就说明服务器已经收到了 ACK 包。

5 shutdown函数 优雅地断开TCP连接

调用 close()/closesocket() 函数意味着完全断开连接,即不能发送数据也不能接收数据,这种“生硬”的方式有时候会显得不太“优雅”。
TCP/IP数据报及三次握手四次挥手
上图演示了两台正在进行双向通信的主机。主机A发送完数据后,单方面调用 close()/closesocket() 断开连接,之后主机A、B都不能再接受对方传输的数据。实际上,是完全无法调用与数据收发有关的函数。
一般情况下这不会有问题,但有些特殊时刻,需要只断开一条数据传输通道,而保留另一条。
使用 shutdown() 函数可以达到这个目的,它的原型为:

 #include <sys/socket.h>
 int shutdown(int sockfd, int how);

sockfd 为需要断开的套接字,how 为断开方式。
how 在 Linux 下有以下取值:

  • SHUT_RD:断开输入流。套接字无法接收数据(即使输入缓冲区收到数据也被抹去),无法调用输入相关函数。
  • SHUT_WR:断开输出流。套接字无法发送数据,但如果输出缓冲区中还有未传输的数据,则将传递到目标主机。
  • SHUT_RDWR:同时断开 I/O 流。相当于分两次调用 shutdown(),其中一次以 SHUT_RD 为参数,另一次以 SHUT_WR 为参数。

close()/closesocket()和shutdown()的区别

确切地说,close() / closesocket() 用来关闭套接字,将套接字描述符(或句柄)从内存清除,之后再也不能使用该套接字,与C语言中的 fclose() 类似。应用程序关闭套接字后,与该套接字相关的连接和缓存也失去了意义,TCP协议会自动触发关闭连接的操作。

shutdown() 用来关闭连接,而不是套接字,不管调用多少次 shutdown(),套接字依然存在,直到调用 close() / closesocket() 将套接字从内存清除。

调用 close()/closesocket() 关闭套接字时,或调用 shutdown() 关闭输出流时,都会向对方发送 FIN 包。FIN 包表示数据传输完毕,计算机收到 FIN 包就知道不会再有数据传送过来了。

默认情况下,close()/closesocket() 会立即向网络中发送FIN包,不管输出缓冲区中是否还有数据,而shutdown() 会等输出缓冲区中的数据传输完毕再发送FIN包。也就意味着,调用 close()/closesocket() 将丢失输出缓冲区中的数据,而调用 shutdown() 不会

相关标签: 网络通信 linux