TensorFlow2.0怎么实现K_Means
介绍
K_Means其实用sklearn即可,TensorFlow1.0早期版本支持K_Means,在2.0之后,由于很多api废弃,导致实现K_Means有很多坑。以下为踩坑记录。
完整代码路径:https://github.com/lilihongjava/leeblog_python/tree/master/tensorflow_kmeans
数据集
采用sklearn iris.csv数据集,位于data目录下
训练方法
入口代码
tf_k_means_model(feature_column="sepal length (cm),sepal width (cm),petal length (cm),petal width (cm)",
center_count=3, input1="./data/iris.csv", output1="./data/")
采用tf.compat.v1.estimator.experimental.KMeans api,此API是从1.X版本迁移来的,目前处于experimental阶段,用于生产环境要小心!
train方法需要接受输入函数(input function),input_fn用于将feature和target data传递给Estimator的train/evaluate/predict方法。这里,将numpy数据转换为Tensors。
def input_fn():
return tf.data.Dataset.from_tensors(tf.convert_to_tensor(points, dtype=tf.float32)).repeat(2)
model.train(input_fn)
模型导出
用的是tf.Estimator.export_saved_model方法,需要指定特征列的类型,这里用的是numeric_column
if output1:
my_feature_columns = []
for key in feature_column:
my_feature_columns.append(tf.feature_column.numeric_column(key=key))
serving_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
tf.feature_column.make_parse_example_spec(my_feature_columns))
estimator_path = model.export_saved_model(output1, serving_input_fn)
导入模型
使用tf.saved_model.load导入目录下的模型,这里k_means导出模型signatures没有predict,这里采用cluster_index替代预测
imported = tf.saved_model.load(model_path)
imported.signatures["cluster_index"]
多维预测
这里要注意的是,一个tf.train.Example代表一个样本数据,这里需要用个list存放多个样本数据。
# 将输入数据转换成序列化后的 Example 字符串。
examples = []
for index, row in feature_dict.iterrows():
feature = {}
for col, value in row.iteritems():
feature[col] = tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
example = tf.train.Example(
features=tf.train.Features(
feature=feature
)
)
examples.append(example.SerializeToString())
整体代码
# encoding: utf-8
"""
@author: lee
@time: 2020/6/29 10:41
@file: main.py
@desc:
"""
import pandas as pd
import tensorflow as tf
import numpy as np
from tensorflow_kmeans.util.common_util import create_df
from tensorflow_kmeans.util.fileUtil import get_last_dir
from util.common_util import arg_check_transformation
def tf_k_means_model(feature_column=None, center_count=None, input1=None, output1=None):
print("输入参数:", locals())
feature_column = arg_check_transformation("list_name_str", "feature_column", feature_column)
if center_count:
center_count = arg_check_transformation("int", "center_count", center_count)
else:
raise Exception("聚类数不能为空")
df = pd.read_csv(input1)
model = tf.compat.v1.estimator.experimental.KMeans(
num_clusters=center_count, use_mini_batch=False)
points = np.array(df[feature_column])
def input_fn():
return tf.data.Dataset.from_tensors(tf.convert_to_tensor(points, dtype=tf.float32)).repeat(2)
# train
num_iterations = 10
previous_centers = None
for _ in range(num_iterations):
model.train(input_fn)
cluster_centers = model.cluster_centers()
if previous_centers is not None:
print('delta:', cluster_centers - previous_centers)
previous_centers = cluster_centers
print('score:', model.score(input_fn))
print('cluster centers:', cluster_centers)
if output1:
my_feature_columns = []
for key in feature_column:
my_feature_columns.append(tf.feature_column.numeric_column(key=key))
serving_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
tf.feature_column.make_parse_example_spec(my_feature_columns))
estimator_path = model.export_saved_model(output1, serving_input_fn)
def model_predict(input_data, input_model_path, feature_column):
feature_column = arg_check_transformation("list_name_str", "feature_column", feature_column)
model_path = get_last_dir(input_model_path)
imported = tf.saved_model.load(model_path)
feature_dict = input_data[feature_column]
# 将输入数据转换成序列化后的 Example 字符串。
examples = []
for index, row in feature_dict.iterrows():
feature = {}
for col, value in row.iteritems():
feature[col] = tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
example = tf.train.Example(
features=tf.train.Features(
feature=feature
)
)
examples.append(example.SerializeToString())
re = imported.signatures["cluster_index"](
examples=tf.constant(examples))
return re["output"].numpy()
if __name__ == '__main__':
tf_k_means_model(feature_column="sepal length (cm),sepal width (cm),petal length (cm),petal width (cm)",
center_count=3, input1="./data/iris.csv", output1="./data/")
data_frame = pd.DataFrame(np.array([[5.0, 3.3, 1.4, 0.2, 0], [7.0, 3.2, 4.7, 1.4, 1]]),
columns=['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
'petal width (cm)', 'target'])
predict = model_predict(
feature_column="sepal length (cm),sepal width (cm),petal length (cm),petal width (cm)",
input_model_path="./data/", input_data=data_frame)
print(predict)
参考:https://www.tensorflow.org/api_docs/python/tf/compat/v1/estimator/experimental/KMeans
https://www.tensorflow.org/guide/saved_model#savedmodels_from_estimators
本文地址:https://blog.csdn.net/qq_33873431/article/details/107160609
上一篇: 热门关键词优化不上去的原因有哪些