欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

双数组查找中位数

程序员文章站 2022-03-14 23:00:34
...

给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

你可以假设 nums1 和 nums2 不会同时为空。

示例 1:

nums1 = [1, 3]
nums2 = [2]

则中位数是 2.0
示例 2:

nums1 = [1, 2]
nums2 = [3, 4]

则中位数是 (2 + 3)/2 = 2.5

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

记录:1、注意时间复杂度log(m+n),log通常是二分查找的时间复杂度。如果使用最简单的方法———合并、排序查找中位数,时间会超。

windliang的解法

class Solution {
    public double findMedianSortedArrays(int[] A, int[] B) {
        int m = A.length;
        int n = B.length;
        if (m > n) { 
            return findMedianSortedArrays(B,A); // 保证 m <= n
        }
        int iMin = 0, iMax = m;
        while (iMin <= iMax) {
            int i = (iMin + iMax) / 2;
            int j = (m + n + 1) / 2 - i;
            if (j != 0 && i != m && B[j-1] > A[i]){ // i 需要增大
                iMin = i + 1; 
            }
            else if (i != 0 && j != n && A[i-1] > B[j]) { // i 需要减小
                iMax = i - 1; 
            }
            else { // 达到要求,并且将边界条件列出来单独考虑
                int maxLeft = 0;
                if (i == 0) { maxLeft = B[j-1]; }
                else if (j == 0) { maxLeft = A[i-1]; }
                else { maxLeft = Math.max(A[i-1], B[j-1]); }
                if ( (m + n) % 2 == 1 ) { return maxLeft; } // 奇数的话不需要考虑右半部分

                int minRight = 0;
                if (i == m) { minRight = B[j]; }
                else if (j == n) { minRight = A[i]; }
                else { minRight = Math.min(B[j], A[i]); }

                return (maxLeft + minRight) / 2.0; //如果是偶数的话返回结果
            }
        }
        return 0.0;
    }
}

作者:windliang
链接:https://leetcode-cn.com/problems/median-of-two-sorted-arrays/solution/xiang-xi-tong-su-de-si-lu-fen-xi-duo-jie-fa-by-w-2/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

双数组查找中位数

相关标签: 算法 二分法