欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

flink入门程序

程序员文章站 2022-03-14 19:09:14
...

本文列出了java版的flink基础程序和使用方法,读者可以通过本文开始flink的基础学习,后续会持续更新flink的相关知识

  • 资源
    flink-1.4.2-bin-hadoop26-scala_2.11.tgz 解压到linux主机,
    执行:sh /root/flink-1.4.2/bin/start-local.sh 启动flink
    访问web:http://ip:8081即可看到flink的状态
    flink入门程序

  • java程序

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;


public class StreamingWindowWordCountJava {

    public static void main(String[] args) throws Exception {
        //定义socket的端口号
        int port;
        try{
            ParameterTool parameterTool = ParameterTool.fromArgs(args);
            port = parameterTool.getInt("port");
        }catch (Exception e){
            System.err.println("没有指定port参数,使用默认值9000");
            port = 9000;
        }

        //获取运行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        //连接socket获取输入的数据
        DataStreamSource<String> text = env.socketTextStream("10.65.123.153", port, "\n");

        //计算数据
        DataStream<WordWithCount> windowCount = text.flatMap(new FlatMapFunction<String, WordWithCount>() {
            public void flatMap(String value, Collector<WordWithCount> out) throws Exception {
                String[] splits = value.split("\\s");
                for (String word:splits) {
                    out.collect(new WordWithCount(word,1L));
                }
            }
        })//打平操作,把每行的单词转为<word,count>类型的数据
                .keyBy("word")//针对相同的word数据进行分组
                .timeWindow(Time.seconds(2),Time.seconds(1))//指定计算数据的窗口大小和滑动窗口大小
                .sum("count");
                /*.reduce(new ReduceFunction<WordWithCount>() {
                    public WordWithCount reduce(WordWithCount a, WordWithCount b) throws Exception {
                        return new WordWithCount(a.word,a.count+b.count);
                    }
                });*/
        //把数据打印到控制台
        windowCount.print()
                .setParallelism(1);//使用一个并行度
        //注意:因为flink是懒加载的,所以必须调用execute方法,上面的代码才会执行
        env.execute("streaming word count");

    }

    /**
     * 主要为了存储单词以及单词出现的次数
     */
    public static class WordWithCount{
        public String word;
        public long count;
        public WordWithCount(){}
        public WordWithCount(String word, long count) {
            this.word = word;
            this.count = count;
        }

        @Override
        public String toString() {
            return "WordWithCount{" +
                    "word='" + word + '\'' +
                    ", count=" + count +
                    '}';
        }
    }


}
  • pom文件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>flink</groupId>
    <artifactId>flink</artifactId>
    <version>1.0-SNAPSHOT</version>
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.4.2</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.11</artifactId>
            <version>1.4.2</version>
            <scope>provided</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_2.11</artifactId>
            <version>1.4.2</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.11</artifactId>
            <version>1.4.2</version>
            <scope>provided</scope>
        </dependency>

    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>3.0.0</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <artifactSet>
                                <excludes>
                                    <exclude>com.google.code.findbugs:jsr305</exclude>
                                    <exclude>org.slf4j:*</exclude>
                                    <exclude>log4j:*</exclude>
                                </excludes>
                            </artifactSet>
                            <filters>
                                <filter>
                                    <!-- Do not copy the signatures in the META-INF folder.
                                    Otherwise, this might cause SecurityExceptions when using the JAR. -->
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>StreamingWindowWordCountJava</mainClass>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>
  • 打包上传jar包并启动
    flink入门程序

  • Server端开启socket发送信息
    flink入门程序

  • 启动job
    flink入门程序

  • 监控job运行情况
    flink入门程序

相关标签: flink