leveldb资料整理
程序员文章站
2022-03-14 17:30:31
...
leveldb介绍
http://code.google.com/p/leveldb/
http://en.wikipedia.org/wiki/LevelDB
http://highscalability.com/blog/2011/8/10/leveldb-fast-and-lightweight-keyvalue-database-from-the-auth.html
http://news.ycombinator.com/item?id=2526032
http://basho.com/blog/technical/2011/07/01/Leveling-the-Field/
http://blog.yufeng.info/archives/1327
http://www.slideshare.net/sunzhidong/google-leveldb-study-discuss
leveldb官方文档
http://leveldb.googlecode.com/svn/trunk/doc/index.html
http://leveldb.googlecode.com/svn/trunk/doc/benchmark.html
http://leveldb.googlecode.com/svn/trunk/doc/impl.html
http://leveldb.googlecode.com/svn/trunk/doc/table_format.txt
http://leveldb.googlecode.com/svn/trunk/doc/log_format.txt
leveldb内部实现和源码解析
http://blog.xiaoheshang.info/?cat=26
http://rdc.taobao.com/blog/cs/?p=1378
http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html
bigtable/mapreduce/gfs/lsm-tree/skiplist论文
http://blademaster.ixiezi.com/2010/03/27/bigtable:一个分布式的结构化数据存储系统中文版/
http://blademaster.ixiezi.com/2010/03/27/google-mapreduce中文版/
http://blademaster.ixiezi.com/2010/03/27/the-google-file-system中文版/
http://staff.ustc.edu.cn/~jpq/paper/flash/1996-The%20Log-Structured%20Merge-Tree%20%28LSM-Tree%29.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.9072&rep=rep1&type=pdf
Tair ldb
http://rdc.taobao.com/blog/cs/?p=1394
http://code.taobao.org/p/tair/wiki/index/
http://code.taobao.org/p/tair/src/branches/ldb/src/storage/ldb/
相关资料
http://www.quora.com/What-is-an-SSTable-in-Googles-internal-infrastructure
http://www.ningoo.net/html/tag/dynamo
http://wiki.apache.org/cassandra/MemtableSSTable
http://wiki.apache.org/cassandra/ArchitectureSSTable
http://en.wikipedia.org/wiki/Queuing_theory
http://rdc.taobao.com/team/jm/archives/1344
Notes
leveldb的Write/Delete:
DB::Put/Delete(DB::Open时*dbptr = impl) => DBImpl::Write => (1) 写log: log_->AddRecord (2) 写memtable: WriteBatchInternal::InsertInto(updates, mem_)
leveldb的Get:
DBImpl::Get => (1) 查memtable: mem->Get (2) 查immutable memtable: imm->Get (3) 查文件 versions_->current() => current->Get => Version::Get
leveldb的Compaction:
leveldb在Open/Get/Write时都有可能做Compaction: DB::Open/DBImpl::Get/DBImpl::Write(DBImpl::MakeRoomForWrite) =>DBImpl::MaybeScheduleCompaction => env_->Schedule(&DBImpl::BGWork, this) => (1) 启后台线程 PosixEnv::Schedule (2) DBImpl::BGWork => DBImpl::BackgroundCall => DBImpl::BackgroundCompaction
leveldb的多线程写:
DBImpl::Write的瓶颈在AcquireLoggingResponsibility,多线程写同一个db时互相竞争logger_,性能反而没有单写线程快. 所以为了scale,对leveldb做sharding,将key做hash后分到多个db,这样多线程读写不会相互竞争,经测试 num_threads : num_dbs为1:1时性能最好,充分利用多核
leveldb的性能调优:
通过sharding/batch writes/increase block_size(size per data block, default 4KB)/increase block_cache(LRUCache, default 8MB)/increase write_buffer_size(memtable size, default 4MB)来提高性能,经过测试,单机24-core采用16 threads/16 shards/1000 batch_sizes/block_size 8K/write_buffer_size 32MB能达到70w+ ops/sec的写性能
http://code.google.com/p/leveldb/
http://en.wikipedia.org/wiki/LevelDB
http://highscalability.com/blog/2011/8/10/leveldb-fast-and-lightweight-keyvalue-database-from-the-auth.html
http://news.ycombinator.com/item?id=2526032
http://basho.com/blog/technical/2011/07/01/Leveling-the-Field/
http://blog.yufeng.info/archives/1327
http://www.slideshare.net/sunzhidong/google-leveldb-study-discuss
leveldb官方文档
http://leveldb.googlecode.com/svn/trunk/doc/index.html
http://leveldb.googlecode.com/svn/trunk/doc/benchmark.html
http://leveldb.googlecode.com/svn/trunk/doc/impl.html
http://leveldb.googlecode.com/svn/trunk/doc/table_format.txt
http://leveldb.googlecode.com/svn/trunk/doc/log_format.txt
leveldb内部实现和源码解析
http://blog.xiaoheshang.info/?cat=26
http://rdc.taobao.com/blog/cs/?p=1378
http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html
bigtable/mapreduce/gfs/lsm-tree/skiplist论文
http://blademaster.ixiezi.com/2010/03/27/bigtable:一个分布式的结构化数据存储系统中文版/
http://blademaster.ixiezi.com/2010/03/27/google-mapreduce中文版/
http://blademaster.ixiezi.com/2010/03/27/the-google-file-system中文版/
http://staff.ustc.edu.cn/~jpq/paper/flash/1996-The%20Log-Structured%20Merge-Tree%20%28LSM-Tree%29.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.9072&rep=rep1&type=pdf
Tair ldb
http://rdc.taobao.com/blog/cs/?p=1394
http://code.taobao.org/p/tair/wiki/index/
http://code.taobao.org/p/tair/src/branches/ldb/src/storage/ldb/
相关资料
http://www.quora.com/What-is-an-SSTable-in-Googles-internal-infrastructure
http://www.ningoo.net/html/tag/dynamo
http://wiki.apache.org/cassandra/MemtableSSTable
http://wiki.apache.org/cassandra/ArchitectureSSTable
http://en.wikipedia.org/wiki/Queuing_theory
http://rdc.taobao.com/team/jm/archives/1344
Notes
leveldb的Write/Delete:
DB::Put/Delete(DB::Open时*dbptr = impl) => DBImpl::Write => (1) 写log: log_->AddRecord (2) 写memtable: WriteBatchInternal::InsertInto(updates, mem_)
leveldb的Get:
DBImpl::Get => (1) 查memtable: mem->Get (2) 查immutable memtable: imm->Get (3) 查文件 versions_->current() => current->Get => Version::Get
leveldb的Compaction:
leveldb在Open/Get/Write时都有可能做Compaction: DB::Open/DBImpl::Get/DBImpl::Write(DBImpl::MakeRoomForWrite) =>DBImpl::MaybeScheduleCompaction => env_->Schedule(&DBImpl::BGWork, this) => (1) 启后台线程 PosixEnv::Schedule (2) DBImpl::BGWork => DBImpl::BackgroundCall => DBImpl::BackgroundCompaction
leveldb的多线程写:
DBImpl::Write的瓶颈在AcquireLoggingResponsibility,多线程写同一个db时互相竞争logger_,性能反而没有单写线程快. 所以为了scale,对leveldb做sharding,将key做hash后分到多个db,这样多线程读写不会相互竞争,经测试 num_threads : num_dbs为1:1时性能最好,充分利用多核
leveldb的性能调优:
通过sharding/batch writes/increase block_size(size per data block, default 4KB)/increase block_cache(LRUCache, default 8MB)/increase write_buffer_size(memtable size, default 4MB)来提高性能,经过测试,单机24-core采用16 threads/16 shards/1000 batch_sizes/block_size 8K/write_buffer_size 32MB能达到70w+ ops/sec的写性能
上一篇: jquery相比js的优势是什么
下一篇: Node.js连接MySQL的方法实例