欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

数据结构——基于邻接矩阵存储的图的深度优先遍历和广度优先遍历

程序员文章站 2022-03-14 10:11:11
...

图的存储结构相比较线性表与树来说就复杂很多,对于线性表来说,是一对一的关系,所以用数组或者链表均可简单存放。树结构是一对多的关系,所以我们要将数组和链表的特性结合在一起才能更好的存放。

那么我们的图,是多对多的情况,另外图上的任何一个顶点都可以被看作是第一个顶点,任一顶点的邻接点之间也不存在次序关系。

仔细观察以下几张图,然后深刻领悟一下:

 

 

因为任意两个顶点之间都可能存在联系,因此无法以数据元素在内存中的物理位置来表示元素之间的关系(内存物理位置是线性的,图的元素关系是平面的)。

如果用多重链表来描述倒是可以做到,但在几节课前的树章节我们已经讨论过,纯粹用多重链表导致的浪费是无法想像的(如果各个顶点的度数相差太大,就会造成巨大的浪费)。

 

邻接矩阵(无向图)

考虑到图是由顶点和边或弧两部分组成,合在一起比较困难,那就很自然地考虑到分为两个结构来分别存储。

顶点因为不区分大小、主次,所以用一个一维数组来存储是狠不错的选择。

而边或弧由于是顶点与顶点之间的关系,一维数组肯定就搞不定了,那我们不妨考虑用一个二维数组来存储。

 

图的邻接矩阵(Adjacency Matrix)存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。

 

我们可以设置两个数组,顶点数组为vertex[4]={V0,V1,V2,V3},边数组arc[4][4]为对称矩阵(0表示不存在顶点间的边,1表示顶点间存在边)。

 

对称矩阵:所谓对称矩阵就是n阶矩阵的元满足a[i][j]=a[j][i](0<=i,j<=n)。即从矩阵的左上角到右下角的主对角线为轴,右上角的元与左下角相对应的元全都是相等的。

有了这个二维数组组成的对称矩阵,我们就可以很容易地知道图中的信息:

  1. 要判定任意两顶点是否有边无边就非常容易了;
  2. 要知道某个顶点的度,其实就是这个顶点Vi在邻接矩阵中第i行(或第i列)的元素之和;
  3. 求顶点Vi的所有邻接点就是将矩阵中第i行元素扫描一遍,arc[i][j]为1就是邻接点咯。

 

邻接矩阵(有向图)

无向图的边构成了一个对称矩阵,貌似浪费了一半的空间,那如果是有向图来存放,会不会把资源都利用得很好呢?

 

可见顶点数组vertex[4]={V0,V1,V2,V3},弧数组arc[4][4]也是一个矩阵,但因为是有向图,所以这个矩阵并不对称,例如由V1到V0有弧,得到arc[1][0]=1,而V0到V1没有弧,因此arc[0][1]=0。

另外有向图是有讲究的,要考虑入度和出度,顶点V1的入度为1,正好是第V1列的各数之和,顶点V1的出度为2,正好是第V1行的各数之和。

 

邻接矩阵(网)

在图的术语中,我们提到了网这个概念,事实上也就是每条边上带有权的图就叫网。

数据结构——基于邻接矩阵存储的图的深度优先遍历和广度优先遍历

 

下面以此无向图为例,使用邻接矩阵存储,并实现深度优先遍历和广度优先遍历:

数据结构——基于邻接矩阵存储的图的深度优先遍历和广度优先遍历

代码如下:

#include <stdio.h>

#define MaxVex        100            //最大顶点数
#define INFINITY    65535        //表示∞
#define TRUE        1
#define    FALSE        0
typedef char        VertexType;    //顶点类型
typedef    int            EdgeType;    //权值类型
typedef int            Bool;
Bool    visited[MaxVex];

typedef struct {
    VertexType    vexs[MaxVex];            //顶点数组
    EdgeType    arc[MaxVex][MaxVex];    //邻接矩阵
    int    numVertexes, numEdges;            //当前图中的结点数以及边数
}MGraph;


//广度优先遍历需要的循环队列
typedef struct {
    int    data[MaxVex];
    int    front, rear;
}Queue;


/****************************************/
//队列的相关操作

//初始化
void InitQueue(Queue *Q)
{
    Q->front = Q->rear = 0;
}

//入队
void EnQueue(Queue *Q, int e)
{
    if ((Q->rear+1)%MaxVex == Q->front)
        return ;

    Q->data[Q->rear] = e;
    Q->rear = (Q->rear+1)%MaxVex;
}

//判空
Bool QueueEmpty(Queue *Q)
{
    if (Q->front == Q->rear)
        return TRUE;
    else
        return FALSE;
}

//出队
void DeQueue(Queue *Q, int *e)
{
    if (Q->front == Q->rear)
        return ;
    
    *e = Q->data[Q->front];
    Q->front = (Q->front+1)%MaxVex;
}
/****************************************/


//建立图的邻接矩阵
void CreateMGraph(MGraph *G)
{
    int i, j, k, w;

    printf("输入顶点数和边数: ");
    scanf("%d%d", &G->numVertexes,&G->numEdges);
    fflush(stdin);

    printf("==============================\n");
    printf("输入各个顶点:\n");
    for (i=0; i<G->numVertexes; ++i)
    {
        printf("顶点%d: ",i+1);
        scanf("%c", &G->vexs[i]);
        fflush(stdin);
    }

    for (i=0; i<G->numVertexes; ++i)
    {
        for (j=0; j<G->numVertexes; ++j)
            G->arc[i][j] = INFINITY;
    }

    printf("==============================\n");
    for (k=0; k<G->numEdges; ++k)
    {
        printf("输入边(vi, vj)中的下标i和j和权W: ");
        scanf("%d%d%d", &i,&j,&w);
        G->arc[i][j] = w;
        G->arc[j][i] = G->arc[i][j];
    }
}


//输出
void DisMGraph(MGraph *G)
{
    int i, j, k;
    k = G->numVertexes;
    for (i=0; i<k; ++i)
    {
        for (j=0; j<k; ++j)
        {
            printf("%5d ", G->arc[i][j]);
        }
        putchar('\n');
    }
}


/****************************************/
//图的深度优先遍历
void DFS(MGraph G, int i)
{
    int j;
    visited[i] = TRUE;
    printf("%c ",    G.vexs[i]);

    for (j=0; j<G.numVertexes; ++j)
    {
        if (G.arc[i][j]!=INFINITY  &&  !visited[j])
            DFS(G, j);
    }
}

void DFSTraverse(MGraph G)
{
    int i;
    for (i=0; i<G.numVertexes; ++i)
        visited[i] = FALSE;

    for (i=0; i<G.numVertexes; ++i)
    {
        if (!visited[i])
            DFS(G, i);
    }

}


//图的广度优先遍历
void BFSTraverse(MGraph *G)
{
    int i, j;
    Queue Q;

    for (i=0; i<G->numVertexes; ++i)
        visited[i] = FALSE;

    InitQueue(&Q);

    for (i=0; i<G->numVertexes; ++i)
    {
        if (!visited[i])
        {
            visited[i] = TRUE;
            printf("%c ", G->vexs[i]);
            EnQueue(&Q, i);

            while (!QueueEmpty(&Q))
            {
                DeQueue(&Q, &i);
                for (j=0; j<G->numVertexes; ++j)
                {
                    if (!visited[j] && G->arc[i][j]!=INFINITY)
                    {
                        visited[j] = TRUE;
                        printf("%c ", G->vexs[j]);
                        EnQueue(&Q, j);
                    }
                }
            }
        }
    }
}
/****************************************/

//程序入口
int main(){
    MGraph G;

    CreateMGraph(&G);

    printf("\n图的深度优先遍历为: ");
    DFSTraverse(G);    

    printf("\n图的广度优先遍历为: ");
    BFSTraverse(&G);

    printf("\n");

    return 0;
}

 

相关标签: 数据结构